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Abstract

The purpose of this paper is to analyze an efficient method for the solution of the

nonlinear system resulting from the discretization of the elliptic Monge-Ampère equation

by a C
0 interior penalty method with Lagrange finite elements. We consider the two-grid

method for nonlinear equations which consists in solving the discrete nonlinear system on a

coarse mesh and using that solution as initial guess for one iteration of Newton’s method on

a finer mesh. Thus both steps are inexpensive. We give quasi-optimal W 1,∞ error estimates

for the discretization and estimate the difference between the interior penalty solution

and the two-grid numerical solution. Numerical experiments confirm the computational

efficiency of the approach compared to Newton’s method on the fine mesh.
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1. Introduction

In this paper, we prove the convergence of a two grid method for solving the nonlinear

system resulting from the discretization of the elliptic Monge-Ampère equation

det(D2u) = f in Ω, u = g on ∂Ω, (1.1)

with a version of the C0 interior penalty discretization proposed in [5]. The domain Ω is

assumed to be a convex polygonal domain of R2 and (1.1) is assumed to have a strictly convex

smooth solution u ∈ Ck+1(Ω) for an integer k ≥ 3. The function f ∈ Ck−1(Ω) is given and

satisfies f ≥ c0 for a constant c0 > 0 and the function g ∈ C(∂Ω) is also given and assumed to

extend to a Ck+1(Ω) function G. In (1.1), D2u =
(

∂2u/(∂xi∂xj)
)

i,j=1,2
is the Hessian matrix

of u and det denotes the determinant operator. Let Vh ⊂ H1(Ω) denote the Lagrange finite

element space of degree k ≥ 3. Let Dv denote the gradient of the function v. Recall that
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cofD2v denotes the matrix of cofactors of D2v. The C0 interior penalty discretization can be

written in abstract form as: find uh ∈ Vh such that uh = gh on ∂Ω and

A(uh, φ) = 0, ∀φ ∈ Vh ∩H1
0 (Ω).

Here gh denotes the canonical interpolant in Vh of a continuous extension of g and A is defined

in (3.1) below. The discretization has the property that if we denote by A′(u; v, φ) the Fréchet

derivative evaluated at u of the mapping v → A(v, φ), then

A′(u; v, φ) =

∫

Ω

(

(cof D2u)Dv
)

·Dφdx, (1.2)

which gives the weak form of a standard linear elliptic operator. We exploit this property to

give quasi-optimal W 1,∞ error estimates, and the convergence of a two-grid numerical scheme

for solving the discrete nonlinear system. Numerical experiments confirm the computational

efficiency of the two-grid method compared to Newton’s method on the fine mesh. Two-grid

methods were initially analyzed in [13] for quasi-linear problems, and (1.1) is a fully nonlinear

equation. The numerical results in [11] used a two-grid method.

Monge-Ampère type equations with smooth solutions on polygonal domains appear in many

problems of practical interest. For example they appear in the study of von Kármán model

for plate buckling [6]. In addition, for meteorological applications for which other differential

operators are discretized with a finite element method, it would be advantageous to use a finite

element discretization for the Monge-Ampère operator as well. It is known that when Ω is

strictly convex with a smooth boundary, and with our smoothness assumptions on f and g,

(1.1) has a smooth solution. There are several discretizations for smooth solutions of (1.1).

Provably convergent schemes for non smooth solutions can be used for smooth solutions as

well. However the latter have a low order of approximation for smooth solutions. We refer

to [8] for example for a review. Because the interior penalty term involves the cofactor matrix

of the Hessian, it is very likely that the method proposed in [5] is suitable only for smooth

solutions. It does not seem possible to put it in the framework of approximation by smooth

solutions proposed in [2], where the right hand side of (1.1) is viewed as a measure.

There has been no previous study of multilevel methods for finite element discretizations

of (1.1). A key tool in the proof of convergence of the two-grid method is a W 1,∞ norm

error estimate for k ≥ 3. Such estimates were obtained in [10] for quadratic and higher order

elements on a smooth domain. But the proof therein relies on an elliptic regularity property of

the linearized problem [10, (2.21)]. Unless the domain is a rectangle, we do not expect such an

elliptic regularity property to hold for general polygonal domains considered in this paper.

With the quasi-optimal W 1,∞ error estimates we obtain a new proof of the optimal H1

estimates obtained in [5]. Although these estimates are not new, we include nethertheless the

proof since its ideas are also used in the proof of the convergence of the two-grid method. The

version of the C0 interior penalty discretization proposed in [5] we consider, consists in imposing

the boundary condition through interpolation, instead of weakly with a penalty term. In this

context, as expected, the proof of the H1 estimates is simpler than the one given in [5]. In

particular, no mesh-dependent norms are used.

The two-grid method consists in solving (1.1) on a coarse mesh of size H and using that

solution as initial guess for one iteration of Newton’s method on a finer mesh of size h with

H = hλ, 0 < λ < 1. Thus both steps are inexpensive. We prove that the convergence rate does
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not deteriorate provided that k ≥ 3 and λ > 1/2 + (2 + ǫ)/(2k) for 0 < ǫ < 1 and h sufficiently

small. Thus for k = 6 and h = 1/2n for an integer n ≥ 6, we may take H = 1/2n−1. In the

case k = 3 the theoretical result dictates for these choices n ≥ 12. However our numerical

experiments indicate that the mesh size h does not need to be that small for computational

efficiency. In addition much coarser mesh sizes H can be taken, for example H = 1/2n−2. Thus

our lower bound for λ is not sharp. In addition numerical results indicate that the two-grid

method is effective for k = 2. The quadratic case is not covered by our theoretical result.

The paper is organized as follows. In the next section, we introduce additional notation

and recall some preliminary results. In Section 3 we give the W 1,∞ error estimates for the

discretization. In Section 4 we present the two-grid algorithm and its error analysis. In Section

5, we present numerical results which confirm the computational efficiency of the two-grid

algorithm.

2. Additional Notation and Preliminaries

Let Th denote a conforming, shape regular and quasi-uniform triangulation of Ω into sim-

plices K. We denote by Eh the set of edges of Th, by Eb
h the set of boundary edges and by E i

h

the set of interior edges.

Let hK denote the diameter of the element K and put h = maxK∈Th
hK . We assume that

0 < h ≤ 1. We recall that, for a shape regular and quasi-uniform triangulation, there exists a

constant σ > 0, independent of h such that hK/ρK ≤ σ, for all K ∈ Th where ρK denotes the

radius of the largest ball inside K and there is another constant C, independent of h, such that

h ≤ ChK for all K ∈ Th. Throughout the paper, we will use the letter C for a generic constant,

independent of h, which may change from occurrences. Many of the constants depend on the

finite element space degree k. Since we have assumed that k is constant, we do not always

specifically indicate the dependence.

We use the usual notation W s,p(Ω), 1 ≤ s, p ≤ ∞ for the Sobolev spaces of functions in

Lp(Ω), 1 ≤ p ≤ ∞, with weak derivatives up to order s in Lp(Ω). The standard notation Hs(Ω)

is used for W s,2(Ω) and H1
0 (Ω) denotes the subspace of elements in H1(Ω) with vanishing trace

on the boundary ∂Ω. Similarly, we define W 1,∞
0 (Ω). The norm of v ∈ W k,p(Ω) is denoted

||v||Wk,p(Ω) and its seminorm |v|Wk,p(Ω). We will omit the argument Ω when it is understood

from context.

Denote by Pk(K) the space of polynomials of degree k ≥ 3 on the element K and let Vh

denote the Lagrange finite element space of degree k

Vh =
{

v ∈ C0(Ω) : v|K ∈ Pk(K) for all K ∈ Th

}

.

We will need the broken Sobolev norm defined for 1 ≤ p < ∞ by

||v||Wk,p(Th) =

(

∑

K∈Th

||v||p
Wk,p(K)

)1/p

,

and for p = ∞ by

||v||Wk,∞(Th) = max
K∈Th

||v||Wk,∞(K).

We recall the inverse estimates [7, Lemma 4.5.3]



550 G. AWANOU, H. LI AND E. MALITZ

||v||W s,p(Th) ≤ Cht−s+min(0, 2
p
− 2

q
)||v||W t,q(Th), ∀v ∈ Vh, (2.1)

valid for 0 ≤ t ≤ s and 1 ≤ p, q ≤ ∞. We also recall the trace inequality [7, Theorem 1.6.6],

||v||Lp(∂Ω) ≤ C||v||W 1,p(Ω), 1 ≤ p ≤ ∞ which gives by a scaling argument

||v||Lp(∂K) ≤ Ch− 1
p

(

||v||Lp(K) + h||Dv||Lp(K)

)

. (2.2)

For φ ∈ W 1,1(Ω), by the trace estimate (2.2), we have

∑

e∈Ei
h

||φ||L1(e) ≤ Ch−1
∑

K∈Th

||φ||W 1,1(K) = Ch−1||φ||W 1,1 . (2.3)

By an inverse estimate one has from (2.2)

||v||L2(∂K) ≤ Ch− 1
2 ||v||L2(K) ∀v ∈ Vh. (2.4)

We will also need the following properties of the Lagrange interpolant operator Ih [7, Corollary

4.4.24]

||v − Ihv||W s,p(Th) ≤ Chk+1−s||v||Wk+1,p , s = 0, 1, 2 and 1 ≤ p ≤ ∞, v ∈ W k+1,p. (2.5)

This follows from our assumptions on the triangulation and [7, (4.4.5) ], i.e. for v ∈ W k+1,p(K)

|v − Ihv|W s,p(K) ≤ Chk+1−s
K |v|Wk+1,p(K), s = 0, 1, 2 and 1 ≤ p ≤ ∞. (2.6)

It follows from (2.2) and (2.6) that

||D(Ihu− u)||L2(∂K)

≤Ch− 1
2 ||D(Ihu− u)||L2(K) + Ch

1
2 ||D(Ihu− u)||H1(K)

≤Chk− 1
2 ||u||Hk+1(K). (2.7)

For two matrices A and B, A : B =
∑2

i,j=1 AijBij denotes their Frobenius inner product.

The divergence of a matrix field is understood as the vector obtained by taking the divergence

of each row.

The following results can be checked by simple algebraic computations and can also be found

in [3]. For v sufficiently smooth we have

detD2v =
1

2
(cofD2v) : D2v, (2.8)

and if F (v) = detD2v − f , the Fréchet derivative of F at v is given by

F ′(v)w = (cofD2v) : D2w, (2.9)

for v, w sufficiently smooth. Under the same assumptions

div
(

(cofD2w)Dv) = (cof D2w) : D2v, (2.10)
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which is a consequence of the product rule and the row divergence-free property of the Hessian,

i.e. div(cofD2w) = 0. It then follows that

F ′(u)v = div
(

(cofD2u)Dv
)

. (2.11)

Note that

cof(D2v +D2w) = cof(D2v) + cof(D2w), (2.12)

since we restrict our discussion to the two dimensional case. We have [5]

detD2v − detD2w =
1

2

(

cof(D2v) + cof(D2w)
)

: (D2v −D2w). (2.13)

Using (2.10), (2.12) and (2.13), we obtain

detD2v − detD2w =
1

2
div
(

(

cofD2(v + w)
)

D(v − w)
)

. (2.14)

We recall that u is strictly convex and thus cofD2u is uniformly positive definite; that is, there

exists positive constants α0 and α1 such that ∀x ∈ R
2

α0|r|
2 ≤ rT

(

cofD2u(x)
)

r ≤ α1|r|
2, ∀r ∈ R

2. (2.15)

For v ∈ Vh, we will make the abuse of notation of denoting by D2v the discrete Hessian of v

computed element by element.

Next, we recall some algebraic manipulations of discontinuous functions. For e ⊂ ∂K, let

nK denote the outward normal to K and let v|K denote the restriction of the field v to K. For

e = K+ ∩K−, we define the jump of the vector field v across e as

[[v]]e = v|K+ · nK+ + v|K− · nK− , (2.16)

and its average on e as

{{v}}e =
1

2
(v|K+ + v|K−). (2.17)

The jump and average of a matrix field E on e are defined respectively as

[[E]]e = nT
K+E|K+ + nT

K−E|K− , (2.18)

{{E}}e =
1

2
(E|K+ + E|K−). (2.19)

For a matrix field E and a vector field v it is not difficult to check that for e ∈ E i
h

[[Ev]]e = [[{{E}}ev]]e + [[E]]e{{v}}e. (2.20)

We will omit below the subscript e as it will be clear from the context.

Let P̂h : H1
0 (Ω) → Vh denote the projection with respect to the bilinear form A′(u; ·, ·) given

by (1.2) and recall that G denotes a Ck+1(Ω) extension of g. We define

Phu = P̂h(u−G) + IhG,
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where Ih denotes the canonical Lagrange interpolant operator into Vh. Then Phu = Ihu on ∂Ω

and

A′(u;Phu− u, φ) = A′(u; IhG−G,φ), ∀φ ∈ Vh ∩H1
0 (Ω). (2.21)

Put w = u−G. Since w = 0 on ∂Ω and w is smooth, we have [7, Corollary 8.1.12]

||w − P̂h(w)||W 1,∞ ≤ Chk||w||Wk+1,∞ , for w ∈ W k+1,∞(Ω), w = 0 on ∂Ω.

Therefore

||u− Phu||W 1,∞ = ||w +G− P̂hw − IhG||W 1,∞

≤ ||w − P̂hw||W 1,∞ + ||G− IhG||W 1,∞ .

It thus follows from the approximation properties of Ih that

||u− Phu||W 1,∞ ≤ Chk||u||Wk+1,∞ ≡ C1(k)h
k, for u ∈ W k+1,∞(Ω). (2.22)

By an inverse estimate, (2.22), and the approximation properties of Ih, we have

||u− Phu||W 2,∞(Th) ≤ ||u− Ihu||W 2,∞(Th) + ||Ihu− Phu||W 2,∞(Th)

≤ Chk−1||u||Wk+1,∞ + Ch−1
(

||Ihu− u||W 1,∞ + ||u− Phu||W 1,∞

)

,

that is

||u− Phu||W 2,∞(Th) ≤ Chk−1||u||Wk+1,∞ . (2.23)

Following [13], we will obtain pointwise estimates via the use of discrete Green’s functions.

For z ∈ Ω \ ∪K∈Th
∂K, let gzh,i ∈ Vh ∩H1

0 (Ω), i = 1, 2 be defined by:

A′(u; gzh,i, φ) =
∂φ

∂xi
(z), ∀φ ∈ Vh ∩H1

0 (Ω), (2.24)

and let Gz
h be defined by

A′(u;Gz
h, φ) = φ(z), ∀φ ∈ Vh ∩H1

0 (Ω). (2.25)

We have for h sufficiently small

||gzh,i||W 1,1 ≤ C| lnh|, ||Gz
h||L2 ≤ C, (2.26)

where the constant C is independent of z. In the case cofD2u is the identity matrix, the proof

is given in [12, Lemmas 2.1 and 3.3]. The proof of the general case is similar [9]. Moreover we

have [9], see also [7, Exercise 8.x.19],

||Gz
h||W 1,1 ≤ C| lnh|. (2.27)

It is enough to prove that |Gz
h|W 1,1 ≤ C| lnh| which follows from the bound |Gz

h|W 1,2 ≤ C| lnh|
1
2

and Hölder’s inequality. By the discrete Sobolev inequality [7, (4.9.2)] and the coercivity of the
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form A′(u; ., .), we have for h sufficiently small

|A′(u;Gz
h, G

z
h)| = |Gz

h(z)| ≤ ||Gz
h||L∞

≤C| ln h|
1
2 ||Gz

h||H1 ≤ C| ln h|
1
2 |A′(u;Gz

h, G
z
h)|

1
2 .

It follows that

|Gz
h|W 1,2 ≤ C|A′(u;Gz

h, G
z
h)|

1
2 ≤ C| lnh|

1
2 ,

giving the claimed bound.

3. W 1,∞ Error Estimates for the C0 Interior Penalty Discretization

We first describe the interior penalty discretization proposed in [5] for polygonal domains

and with the boundary condition enforced strongly. For φ ∈ H1
0 (Ω) and v ∈ H3(K) for all

K ∈ Th, we define

A(v, φ) :=
∑

K∈Th

∫

K

(f − detD2v)φdx +
∑

e∈Ei
h

∫

e

[[{{cofD2v}}Dv]]φds. (3.1)

Recall that the discrete problem is given by

A(uh, φ) = 0, ∀φ ∈ Vh ∩H1
0 (Ω). (3.2)

The addition of the penalty terms, the second term on the right of (3.1), to the natural

discretization of (1.1) is the reason of the name C0 Interior penalty discretization for (3.2).

The addition of these terms is motivated by the need in the analysis that the Fréchet derivative

evaluated at u of the mapping v → A(v, φ) is given by (1.2). This is proven in [5, p. 5]. For

the convenience of the reader, we give the proof in the next lemma.

Let R(w; v, φ) denote the remainder of the Taylor expansion at w of w 7→ A(w, φ), i.e.

A(w + v, φ) = A(w, φ) +A′(w; v, φ) +R(w; v, φ). (3.3)

Lemma 3.1. For v, w ∈ H3(K) for all K ∈ Th and φ ∈ H1
0 (Ω), we have

A′(w; v, φ) =
∑

K∈Th

∫

K

(

(cofD2w)Dv
)

·Dφdx

−
∑

e∈Ei
h

∫

e

[[(cof D2w)]]{{Dv}}φds+
∑

e∈Ei
h

∫

e

[[{{cofD2v}}Dw]]φds, (3.4)

R(w; v, φ) = −
∑

K∈Th

∫

K

(detD2v)φdx +
∑

e∈Ei
h

∫

e

[[{{cofD2v}}Dv]]φds. (3.5)

In particular, for u ∈ C3(Ω), (1.2) holds.
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Proof. For w, v ∈ H3(K) for all K ∈ Th we have

A(w + v, φ)−A(w, φ) =−
∑

K∈Th

∫

K

(

detD2(w + v)− detD2w
)

φdx

+
∑

e∈Ei
h

∫

e

[[{{cofD2(w + v)}}D(w + v)]]φds

−
∑

e∈Ei
h

∫

e

[[{{cofD2w}}Dw]]φds,

for all φ ∈ H1
0 (Ω). Since D

2w is a 2× 2 matrix, detD2(w+ v) = detD2w+detD2v+cofD2w :

D2v. Thus

A(w + v, φ) −A(w, φ) =−
∑

K∈Th

∫

K

(detD2v)φdx −
∑

K∈Th

∫

K

(cofD2w : D2v)φdx

+
∑

e∈Ei
h

∫

e

[[{{cofD2w}}Dv]]φds+
∑

e∈Ei
h

∫

e

[[{{cofD2v}}Dw]]φds

+
∑

e∈Ei
h

∫

e

[[{{cofD2v}}Dv]]φds.

By (2.10) cofD2w : D2v = div
(

(cofD2w)Dv). This implies that

A′(w; v, φ) = −
∑

K∈Th

∫

K

div
(

(cofD2w)Dv
)

φdx+
∑

e∈Ei
h

∫

e

[[{{cofD2w}}Dv]]φds

+
∑

e∈Ei
h

∫

e

[[{{cofD2v}}Dw]]φds,

and R(w; v, φ) is given by (3.5). By integration by parts and using the fact φ = 0 on ∂Ω,

A′(w; v, φ) =
∑

K∈Th

∫

K

(

(cof D2w)Dv
)

·Dφdx −
∑

e∈Ei
h

∫

e

[[(cofD2w)Dv]]φdx

+
∑

e∈Ei
h

∫

e

[[{{cofD2w}}Dv]]φds+
∑

e∈Ei
h

∫

e

[[{{cofD2v}}Dw]]φds.

By (2.20), [[(cofD2w)Dv]] = [[{{cofD2w}}Dv]] + [[ cofD2w]]{{Dv}}. It follows that

A′(w; v, φ) =
∑

K∈Th

∫

K

(

(cofD2w)Dv
)

·Dφdx−
∑

e∈Ei
h

∫

e

[[(cofD2w)]]{{Dv}}φds

+
∑

e∈Ei
h

∫

e

[[{{cofD2v}}Dw]]φds.

Finally, since by assumption u ∈ C3(Ω), [[(cofD2u)]] = 0. In addition, by definition {{cofD2v}}

is continuous and Du is continuous by the assumption on u. Thus [[{{cofD2v}}Du]] = 0 on

each interior edge. The statement about A′(u; v, φ) easily follows. �
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Lemma 3.2. We have for φ ∈ H1
0 (Ω) and v, w ∈ H3(K) for all K ∈ Th,

R(w; v, φ) =
1

2

∑

K∈Th

∫

K

[(cofD2v)Dv] ·Dφdx (3.6)

−
1

2

∑

e∈Ei
h

∫

e

[[(cof D2v)]]{{Dv}}φds+
1

2

∑

e∈Ei
h

∫

e

[[{{cofD2v}}Dv]]φds.

Proof. Using (2.8) and integration by parts

∫

K

(detD2v)φdx =
1

2

∫

K

(cofD2v) : (D2v)φdx =
1

2

∫

K

div
(

(cofD2v)Dv)φdx

= −
1

2

∫

K

[(cofD2v)Dv] ·Dφdx +
1

2

∫

∂K

[

(cofD2v)Dv
]

· nKφds.

By definition of jump and since φ = 0 on ∂Ω, we have

∑

K∈Th

∫

∂K

(

(cof D2v)Dv
)

· nKφds =
∑

e∈Ei
h

∫

e

[[(cof D2v)Dv]]φds. (3.7)

We conclude that

R(w; v, φ) =
1

2

∑

K∈Th

∫

K

[(cof D2v)Dv] ·Dφdx−
1

2

∑

e∈Ei
h

∫

e

[[(cofD2v)Dv]]φds

+
∑

e∈Ei
h

∫

e

[[{{cofD2v}}Dv]]φds.

Therefore, using (2.20) to expand the term [[(cof D2v)Dv]] we obtain (3.6). �

We define a nonlinear operator Φ : Vh → Vh by vh = Φ(vh) on ∂Ω and

A′(u; vh − Φ(vh), φ) = A(vh, φ), ∀φ ∈ Vh ∩H1
0 (Ω). (3.8)

A fixed point of Φ is a solution of the nonlinear finite element problem (3.2). We note that by

(1.2), (2.5), (2.26) and (2.27)

|A′(u; IhG−G,Gz
h)| ≤ C2(k)h

k| lnh|,

|A′(u; IhG−G, gzh,i)| ≤ C3(k)h
k| lnh|.

We then define C4 = max{C1, C2, C3} where the constant C1 is defined in (2.22). Consider

the closed set

Bh =
{

v ∈ Vh : v = gh on ∂Ω, ||v − u||W 1,∞ ≤ 3C4h
k| lnh|

}

. (3.9)

By (2.22) Phu ∈ Bh and hence Bh is non-empty.

Lemma 3.3. We have Φ(Bh) ⊂ Bh for h sufficiently small and k ≥ 3.
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Proof. For vh ∈ Bh, we have using (3.8) and (2.21)

A′(u; Φ(vh)− Phu, φ) = A′(u; Φ(vh)− vh, φ) +A′(u; vh − Phu, φ)

= −A(vh, φ) +A′(u; vh − u, φ) +A′(u;u− Phu, φ)

= −A(vh, φ) +A′(u; vh − u, φ)−A′(u; IhG−G,φ).

By definition of the residual (3.3), and since A(u, φ) = 0, we have

−A(vh, φ) +A′(u; vh − u, φ)

=A(u, φ) −A(vh, φ) +A′(u; vh − u, φ) = −R(u; vh − u, φ).

We conclude that

A′(u; Φ(vh)− Phu, φ) = −R(u; vh − u, φ)−A′(u; IhG−G,φ). (3.10)

Therefore, using (3.6), (2.3) and (1.2), we have

|A′(u; Φ(vh)− Phu, φ)|

≤C||vh − u||W 2,∞(Th)||vh − u||W 1,∞ ||φ||W 1,1

+ C||vh − u||W 2,∞(Th)||vh − u||W 1,∞

∑

e∈Ei
h

||φ||L1(e) + |A′(u; IhG−G,φ)|

≤Ch−1||vh − u||W 2,∞(Th)||vh − u||W 1,∞ ||φ||W 1,1 + |A′(u; IhG−G,φ)|.

By definition of Bh, ||vh−u||W 1,∞ ≤ Chk| lnh|. Moreover, by triangle inequality, (2.23) and an

inverse estimate ||vh−u||W 2,∞(Th) ≤ ||vh−Phu||W 2,∞(Th)+ ||Phu−u||W 2,∞(Th) ≤ Chk−1| lnh|+

Chk−1 ≤ Chk−1| lnh|. Thus

|A′(u; Φ(vh)− Phu, φ)| ≤Chk−2| lnh| ||φ||W 1,1hk| lnh|+ |A′(u; IhG−G,φ)|

≤(Chk−2| lnh|2)hk||φ||W 1,1 + |A′(u; IhG−G,φ)|.

Taking φ = gzh,i with the estimate (2.26), and taking φ = Gz
h with the estimate (2.27), we

obtain using the definition of C4

||Φ(vh)− Phu||W 1,∞ ≤ (Chk−2| lnh|2 + C4)h
k| lnh|.

Since Chk−2| lnh|2 ≤ C4 for h sufficiently small and k ≥ 3, we get ||Φ(vh) − Phu||W 1,∞ ≤

2C4h
k| lnh|. By triangular inequality and (2.22), the result follows. �

We will use below a certain algebraic manipulation which is encoded in the following lemma.

Lemma 3.4. Let L1 and L2 be linear functionals and let L denote their product, i.e. L(v) =

L1(v)L2(v). We have

L(w − u)− L(v − u) = L1(w − v)L2(w − u) + L1(v − u)L2(w − v).
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Proof. We have using the linearity of L1 and L2

L(w − u)− L(v − u) = L1(w − u)L2(w − u)− L1(v − u)L2(v − u)

= [L1(w − v) + L1(v − u)]L2(w − u)− L1(v − u)L2(v − u)

= L1(w − v)L2(w − u) + L1(v − u)[L2(w − u)− L2(v − u)],

from which the desired result follows. �

Lemma 3.5. The mapping Φ is a strict contraction in Bh for h sufficiently small and k ≥ 3.

Proof. For vh and wh in Bh, we have

A′(u; Φ(vh)− Φ(wh), φ)

=A′(u; Φ(vh)− vh, φ) +A′(u; vh − wh, φ) +A′(u;wh − Φ(wh), φ)

=A(wh, φ)−A(vh, φ) +A′(u; vh − wh, φ)

=A(wh, φ)−A(vh, φ) +A′(u; vh − u, φ) +A′(u;u− wh, φ).

Since A(u, φ) = 0, by definition of the residual (3.3), we have

A′(u; Φ(vh)− Φ(wh), φ) = R(u;wh − u, φ)−R(u; vh − u, φ).

Using algebraic manipulations of the type identified in Lemma 3.4 and (3.6), we obtain

A′(u; Φ(vh)− Φ(wh), φ) (3.11)

=
1

2

∑

K∈Th

∫

K

[(cofD2(wh − vh))D(wh − u)] ·Dφdx

+
1

2

∑

K∈Th

∫

K

[(cof D2(vh − u))D(wh − vh)] ·Dφdx

−
1

2

∑

e∈Ei
h

∫

e

(

[[(cofD2(wh − vh))]]{{D(wh − u)}}+ [[(cof D2(vh − u))]]{{D(wh − vh)}}

)

φds

+
1

2

∑

e∈Ei
h

∫

e

(

[[{{cofD2(wh − vh)}}D(wh − u)]] + [[{{cofD2(vh − u)}}D(wh − vh)]]

)

φds.

Arguing as in the proof of Lemma 3.3 and using (2.3), we obtain

|A′(u; Φ(vh)− Φ(wh), φ)| ≤C
(

||wh − vh||W 2,∞(Th)||wh − u||W 1,∞

+ ||vh − u||W 2,∞(Th)||vh − wh||W 1,∞

)

||φ||W 1,1 .

As in the proof of Lemma 3.3, we have ||vh − u||W 2,∞(Th) ≤ Chk−1| lnh| and recall that ||wh −

u||W 1,∞ ≤ Chk| lnh| by definition of Bh. Moreover, by an inverse estimate ||wh−vh||W 2,∞(Th) ≤

Ch−1||wh − vh||W 1,∞ . We conclude that

|A′(u; Φ(vh)− Φ(wh), φ)| ≤ C
(

hk−1| lnh|+ hk−1| lnh|
)

||vh − wh||W 1,∞ ||φ||W 1,1 .
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Taking φ = gzh,i with the estimate (2.26), and taking φ = Gz
h with the estimate (2.27), we

obtain

||Φ(vh)− Φ(wh)||W 1,∞ ≤ C(hk−1 + hk−1)| lnh|2||vh − wh||W 1,∞ ,

that is, for k ≥ 3 and h sufficiently small, we have ||Φ(vh)− Φ(wh)||W 1,∞ ≤ 1
2 ||vh − wh||W 1,∞ .

This completes the proof of the lemma. �

The following theorem follows from Lemmas 3.5 and 3.3 and the Banach fixed point theorem.

Theorem 3.1. Problem (3.2) has a unique solution uh in Bh for k ≥ 3, h sufficiently small

and

||u− uh||W 1,∞ ≤ Chk| lnh|.

We note that in the case of a homogeneous boundary condition, G = 0 and the right hand

side of (2.21) vanishes. In that case, the right hand side of (3.10) simplifies and the rate of

convergence in the W 1,∞ norm can be shown to be optimal. In other words, Theorem 3.1 can

be improved with suitable estimates of the Ritz projection with a non homogeneous boundary

condition. The following optimal error estimate in the H1 norm is derived from Theorem 3.1.

A different proof was given in [5].

Theorem 3.2. Problem (3.2) has a unique solution uh in Bh for k ≥ 3, h sufficiently small

and

||u− uh||H1 ≤ Chk.

Proof. The proof is based on the expression (3.11) of A′(u; Φ(vh)−Φ(wh), φ) derived in the

proof of Lemma 3.5 and the expression (3.10) of A′(u; Φ(vh) − Phu, φ) derived in the proof of

Lemma 3.3. Since Φ(uh) = uh, we have

A′(u;uh − Phu, φ) = A′(u; Φ(uh)− Phu, φ)

= A′(u; Φ(uh)− Φ(Phu), φ) +A′(u; Φ(Phu)− Phu, φ). (3.12)

In view of (3.11), we obtain

|A′(u; Φ(uh)− Φ(Phu), φ)|

≤C||uh − Phu||W 2,∞(Th)||Phu− u||H1 ||φ||H1 + C||uh − u||W 2,∞(Th)||uh − Phu||H1 ||φ||H1

+ C||uh − Phu||W 2,∞(Th)

∑

K∈Th

|Phu− u|H1(∂K)||φ||L2(∂K)

+ C||uh − u||W 2,∞(Th)

∑

K∈Th

||Phu− uh||H1(∂K)||φ||L2(∂K). (3.13)

By an inverse estimate, Theorem 3.1, triangle inequality and (2.22), we have ||uh−Phu||W 2,∞(Th) ≤

Chk−1| lnh|. Similarly, using (2.23), we have ||uh − u||W 2,∞(Th) ≤ Chk−1| lnh|. Next, by the

scaled trace inverse inequality (2.4) and Cauchy-Schwarz inequality

∑

K∈Th

||Phu− uh||H1(∂K)||φ||L2(∂K)

≤Ch−1
∑

K∈Th

||Phu− uh||H1(K)||φ||H1(K) ≤ Ch−1||Phu− uh||H1 ||φ||H1 . (3.14)
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By (2.7), an inverse estimate and (2.6)

|Phu− u|H1(∂K) ≤ |Phu− Ihu|H1(∂K) + |Ihu− u|H1(∂K)

≤ Ch− 1
2 |Phu− Ihu|H1(K) + Chk− 1

2 ||u||Hk+1(K)

≤ Ch− 1
2 |Phu− u|H1(K) + Ch− 1

2 |u− Ihu|H1(K) + Chk− 1
2 ||u||Hk+1(K)

≤ Ch− 1
2 |Phu− u|H1(K) + Chk− 1

2 ||u||Hk+1(K).

We have ||Phu − u||H1 ≤ Chk||u||Hk+1 . This follows from [7, Theorem 5.4.4] in the case of

homogeneous boundary conditions. The proof of the general case is similar to (2.22). Thus

(

∑

K∈Th

|Phu− u|2H1(∂K)

)
1
2

≤Ch− 1
2 |Phu− u|H1 + Chk− 1

2 ||u||Hk+1 ≤ Chk− 1
2 ||u||Hk+1 .

As with (3.14), by (2.4) and Cauchy-Schwarz inequality, it follows that

∑

K∈Th

|Phu− u|H1(∂K)||φ||L2(∂K)

≤Ch− 1
2

∑

K∈Th

|Phu− u|H1(∂K)||φ||H1(K) ≤ Chk−1||u||Hk+1 ||φ||H1 . (3.15)

We conclude from (3.13)–(3.15) that

|A′(u; Φ(uh)− Φ(Phu), φ)|

≤Chk−1| lnh| ||Phu− u||H1 ||φ||H1 + Chk−1| lnh| ||uh − Phu||H1 ||φ||H1

+ Chk−1||uh − Phu||W 2,∞ ||φ||H1 + Chk−2| lnh| ||uh − Phu||H1 ||φ||H1 .

Therefore since by Theorem 3.1 we have the suboptimal estimate ||uh − Phu||H1 ≤ C||uh −

Phu||W 1,∞ ≤ Chk| lnh|

|A′(u; Φ(uh)− Φ(Phu), φ)| ≤ Chk−1| lnh|hk||φ||H1 + Chk−1| lnh|2hk||φ||H1

+Chk−2| lnh|hk||φ||H1 + Chk−2| lnh|2hk||φ||H1

≤ Chk−2| lnh|2hk||φ||H1 ≤ Chk||φ||H1 , (3.16)

for k ≥ 3. By (3.10), we have

A′(u; Φ(Phu)− Phu, φ) = −R(u;Phu− u, φ) +A′(u; IhG−G,φ).

Using (3.6) and inverse estimates as for (3.15), we obtain

|A′(u; Φ(Phu)− Phu, φ)|

≤ C||Phu− u||W 2,∞(Th)||Phu− u||H1 ||φ||H1

+Ch−1||Phu− u||W 2,∞(Th)||Phu− u||H1 ||φ||H1 + C||IhG−G||H1 ||φ||H1 ,
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i.e.

|A′(u; Φ(Phu)− Phu, φ)|

≤C(hk−1| lnh|hk + hk−2| lnh|hk + hk)||φ||H1 ≤ Chk||φ||H1 , (3.17)

for k ≥ 3. Taking φ = uh − Phu in (3.12) and using (3.16) and (3.17), we get from Poincaré’s

inequality and k ≥ 3, for h sufficiently small

||uh − Phu||H1 ≤ Chk.

This completes the proof by a triangle inequality. �

4. Analysis of the Two-Grid Algorithm

The two-grid discretization for solving nonlinear problems is a well established technique.

The nonlinear problem (3.2) is first solved on a coarse mesh of size H . The solution uH is used

as an initial guess for one step of Newton’s method on the finer mesh of size h. Both steps

are inexpensive and the method is more efficient than solving the problem through multiple

iterations of Newton’s method directly on the fine mesh.

Since u is smooth and strictly convex, the smallest eigenvalue of D2u is uniformly bounded

from below. Thus by the continuity of the eigenvalues of the Hessian as a function of its entries

and by approximation, D2uH is uniformly positive definite on each element for H sufficiently

small. A detailed argument was given in [1, Lemma 4] in the context of C1 approximations.

We consider the version of [13, Algorithm 5.5].

Two-grid algorithm

1. Find uH ∈ VH , uH = gH on ∂Ω, and A(uH , χ) = 0, ∀ χ ∈ VH ∩H1
0 (Ω).

2. Find uh ∈ Vh, u
h = gh on ∂Ω, and A′(uH ;uh − uH , φ) = −A(uH , φ), ∀ φ ∈ Vh ∩H1

0 (Ω).

Our goal is to show that the two-grid method is optimal in the sense that ||u−uh||H1 ≤ Chk.

Theorem 4.1. We have the estimate

||uh − uh||H1 ≤ Chk, (4.1)

for k ≥ 3, H = hλ, 1 > λ > 1/2 + (2 + ǫ)/(2k), 0 < ǫ < 1 and h sufficiently small.

Proof. By definition of the two-grid algorithm, the definition of the residual (3.3), and

A(uh, φ) = 0 for φ ∈ Vh ∩W 1,∞
0 (Ω), we have

A′(uH ;uh − uh, φ) = A′(uH ;uh − uH , φ) +A′(uH ;uH − uh, φ)

= A′(uH ;uh − uH , φ) +A(uH , φ)

= A(uh, φ)−R(uH ;uh − uH , φ) = −R(uH ;uh − uH , φ).
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It follows that

A′(u;uh − uh, φ) = A′(u− uH ;uh − uh, φ) +A′(uH ;uh − uh, φ)

= A′(u− uH ;uh − uh, φ)−R(uH ;uh − uH , φ).

With arguments similar to the ones used in the proof of Theorem 3.2, we have

|A′(u;uh − uh, φ)| (4.2)

≤C||u− uH ||W 2,∞(Th)||uh − uh||H1 ||φ||H1 + Ch−1||u− uH ||W 2,∞(Th)||uh − uh||H1 ||φ||H1

+ C||φ||L∞

∑

K∈Th

|u− uH |H1(∂K)||uh − uh||H2(∂K) + |R(uH ;uh − uH , φ)|.

But, using (2.7), (2.6) and an inverse estimate

|u− uH |H1(∂K) ≤ |u− IHu|H1(∂K) + |IHu− uH |H1(∂K)

≤CHk− 1
2 ||u||Hk+1(K) + CH− 1

2 |IHu− uH |H1(K)

≤CHk− 1
2 ||u||Hk+1(K) + CH− 1

2 |IHu− u|H1(K) + CH− 1
2 |u− uH |H1(K).

It follows that

(

∑

K∈Th

|u− uH |2H1(∂K)

)
1
2

≤CHk− 1
2 ||u||Hk+1 + CH− 1

2 |IHu− u|H1 + CH− 1
2 |u− uH |H1 .

We therefore obtain from (2.5) and Theorem 3.2

(

∑

K∈Th

|u− uH |2H1(∂K)

)
1
2

≤ CHk− 1
2 ||u||Hk+1 .

By Cauchy-Schwarz’s inequality, (2.4) and an inverse estimate, it follows that

∑

K∈Th

|u− uH |H1(∂K)||uh − uh||H2(∂K) ≤ Ch− 3
2Hk− 1

2 ||u||Hk+1 ||uh − uh||H1 .

Therefore, since ||u − uH ||W 2,∞(Th) ≤ CHk−1| lnH | and by the discrete Sobolev inequality,

c.f. [4], ||φ||L∞ ≤ C(1 + | lnh|1/2)||φ||H1 , we obtain from (4.2)

A′(u;uh − uh, φ)| ≤ Ch−1||u− uH ||W 2,∞(Th)||uh − uh||H1 ||φ||H1

+ CHk− 1
2 h− 3

2 | lnh| ||uh − uh||H1 ||u||Hk+1 ||φ||H1 + |R(uH ;uh − uH , φ)|

≤Ch−1Hk−1| lnH | ||uh − uh||H1 ||φ||H1 + CHk− 1
2h− 3

2 | lnh| ||uh − uh||H1 ||φ||H1

+ |R(uH ;uh − uH , φ)|. (4.3)
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Using (3.6) and the trace estimates (2.4) and (2.2), we have

|R(uH ;uh − uH , φ)|

≤C||uh − uH ||W 2,∞(Th)||uh − uH ||H1 ||φ||H1 + Ch−1||uh − uH ||W 2,∞(Th)||uh − uH ||H1 ||φ||H1

≤Ch−2||uh − uH ||W 1,∞ ||uh − uH ||H1 ||φ||H1 . (4.4)

Taking φ = uh − uh in (4.3) and using (4.4), we get from Poincaré’s inequality, Theorems 3.1

and 3.2 for k ≥ 3 and h sufficiently small

||uh − uh||H1 ≤C(h−1Hk−1| lnH |+Hk− 1
2h− 3

2 | lnh|)||uh − uh||H1

+ Ch−2(hk| lnh|+Hk| lnH |)(hk +Hk).

We conclude that for H = hλ, λ > max{1/(k − 1), 3/(2k− 1)} = 3/(2k − 1) and k ≥ 3,

||uh − uh||H1 ≤ Ch−2| lnH |H2k.

We therefore get ||uh − uh||H1 ≤ Chk provided λ > 3/(2k − 1) and 2λk − 2 − ǫ > k for some

ǫ ∈ (0, 1), that is λ > max{(k + 2+ ǫ)/(2k), 3/(2k − 1)} = 1/2 + (2 + ǫ)/(2k) for k ≥ 3. �

5. Numerical Experiments

The computational domain is taken to be the unit square [0, 1]2. A uniform grid is obtained

by dividing the domain into smaller equal size squares, then dividing each square into two

triangles by taking the diagonal with positive slope. We consider a smooth convex test function

u(x, y) = e(x
2+y2)/2 so that f(x, y) = (1 + x2 + y2)e(x

2+y2) and g(x, y) = e(x
2+y2)/2 on ∂Ω.

While our convergence analysis is only for cubic and higher order elements and for fine meshes

h, we believe the results should be true for quadratic elements, reasonable values of h and

allow for much coarse meshes H . Thus, we provide numerical results for both P2 and P3 finite

elements. On the coarse grid of size H , we first seek an initial guess u0
H of uH as the standard

finite element approximation of the solution u0 of

∆u0 = 2
√

f, u0 = g on ∂Ω.

For solving the coarse grid problem, we perform Newton’s method on the coarse grid, setting the

maximum iterations to 10 and we impose that the algorithm terminates when ||uH ||L∞/||u0
H ||L∞

≤ 10−6. We report computation times (in seconds) for the two-grid method and Newton’s

method on the fine grid, as well as H1 errors and associated rate of convergence. See Table 5.1

for λ = 1+2 ln 2/(lnh) = 1− 2/n, h = 1/2n, n = 2, 3 . . ., and Table 5.2 for λ = 1+ ln 2/(lnh) =

1 − 1/n, h = 1/2n, n = 2, 3 . . . for P2 elements. See Table 5.3 and Table 5.4 for the analogous

results using P3 elements. Note that λ in these numerical results is allowed to be much lower

than what our theory predicts.

We also attempted several multigrid experiments, where we interpolate between a series of

meshes before ending on the fine grid. However these gave results comparable to the two-grid

algorithm. At the cost of extra computation time, there is a slight increase in accuracy if a

second iteration is performed on the fine grid. We do not report these results since a second
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Table 5.1: P2; λ = 1 + 2 ln 2
lnh .

H h ||u− uh||H1 rate ||u− uh||H1 rate two-grid time Newton time
1/20 1/22 2.19 10−2 - 3.12 10−1 - 2.80 10−2 4.90 10−2

1/21 1/23 5.55 10−3 1.98 3.22 10−2 3.28 7.10 10−2 1.67 10−1

1/22 1/24 1.39 10−3 2.00 3.69 10−3 3.12 2.37 10−1 8.58 10−1

1/23 1/25 3.48 10−4 2.00 6.34 10−4 2.54 9.92 10−1 3.25 100

1/24 1/26 8.70 10−5 2.00 1.48 10−4 2.10 4.15 100 1.31 101

1/25 1/27 2.18 10−5 2.00 3.65 10−5 2.02 1.87 101 5.59 101

1/26 1/28 5.44 10−6 2.00 9.11 10−6 2.00 8.57 101 2.73 102

Table 5.2: P2; λ = 1 + ln 2
lnh .

H h ||u− uh||H1 rate ||u− uh||H1 rate two-grid time Newton time
1/21 1/22 2.19 10−2 - 2.72 10−2 - 3.10 10−2 4.90 10−2

1/22 1/23 5.55 10−3 1.98 5.97 10−3 2.19 7.80 10−2 1.67 10−1

1/23 1/24 1.39 10−3 2.00 1.43 10−3 2.06 3.44 10−1 8.58 10−1

1/24 1/25 3.48 10−4 2.00 3.54 10−4 2.01 1.69 100 3.25 100

1/25 1/26 8.70 10−5 2.00 8.83 10−5 2.00 6.44 100 1.31 101

1/26 1/27 2.18 10−5 2.00 2.21 10−5 2.00 3.18 101 5.59 101

1/27 1/28 5.44 10−6 2.00 5.51 10−6 2.00 1.20 102 2.73 102

Table 5.3: P3; λ = 1 + 2 ln 2
lnh .

H h ||u− uh||H1 rate ||u− uh||H1 rate two-grid time Newton time
1/20 1/22 9.82 10−4 - 3.43 10−1 - 9.30 10−2 2.50 10−1

1/21 1/23 1.13 10−4 3.11 3.84 10−3 6.48 1.88 10−1 7.96 10−1

1/22 1/24 1.36 10−5 3.06 3.70 10−5 6.70 6.09 10−1 2.30 100

1/23 1/25 1.67 10−6 3.03 2.24 10−6 4.05 2.32 100 8.31 100

1/24 1/26 2.07 10−7 3.01 2.23 10−7 3.33 9.80 100 3.94 101

1/25 1/27 2.57 10−8 3.01 2.62 10−8 3.09 4.95 101 2.04 102

Table 5.4: P3; λ = 1 + ln 2
lnh .

H h ||u− uh||H1 rate ||u− uh||H1 rate two-grid time Newton time
1/21 1/22 9.82 10−4 - 1.85 10−3 - 1.29 10−1 2.50 10−1

1/22 1/23 1.13 10−4 3.11 1.16 10−4 3.99 3.16 10−1 7.96 10−1

1/23 1/24 1.36 10−5 3.06 1.37 10−5 3.09 9.08 10−1 2.30 100

1/24 1/25 1.67 10−6 3.03 1.67 10−6 3.03 3.87 100 8.31 100

1/25 1/26 2.07 10−7 3.01 2.07 10−7 3.01 1.44 101 3.94 101

1/26 1/27 2.57 10−8 3.01 2.57 10−8 3.01 7.10 101 2.04 102

iteration on the fine grid does not affect the rate of convergence of the method.

The two-grid computations are accurate and fast compared with Newton’s method. The

computations were done in FreeFEM++ on an HP computer with Pentium dual-core 2.60 GHz

processor running Windows 10.
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