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Abstract We develop new multigrid methods for a class of saddle point problems
that include the Stokes system in fluid flow and the Lamé system in linear elasticity
as special cases. The new smoothers in the multigrid methods involve optimal pre-
conditioners for the discrete Laplace operator. We prove uniform convergence of the
W -cycle algorithm in the energy norm and present numerical results for W -cycle and
V -cycle algorithms.
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1 Introduction

In this paper we consider multigrid methods for a class of saddle point problems that
include the stationary Stokes system in fluid flow with the no-slip boundary condition
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194 S. C. Brenner et al.

and the Lamé system in linear elasticity with the homogeneous displacement boundary
condition as special cases. We will follow standard notation for differential operators
and Sobolev spaces that are found for example in [16,19], and we will use boldfaced
letters to denote vector functions. Throughout the paper � is a bounded polyhedral
domain in R

d (d = 2, 3).
The Stokes problem (cf. [18,24]) is to find (u, p) ∈ [H1

0 (�)]d × L0
2(�) such that

ν

∫

�

∇u : ∇v dx −
∫

�

(∇ · v)p dx =
∫

�

f · v dx ∀ v ∈ [H1
0 (�)]d , (1.1a)

−
∫

�

(∇ · u)q dx = 0 ∀ q ∈ L0
2(�), (1.1b)

where u is the fluid velocity, p is the pressure, ν is the kinematic viscosity, f ∈
[L2(�)]d is the density of body force, L0

2(�) = {q ∈ L2(�) : ∫
�

q dx = 0}, and the
colon stands for the Frobenius product between matrices.

The Lamé problem (cf. [18,21]) is to find (u, p) ∈ [H1
0 (�)]d × L0

2(�) such that

2μ

∫

�

ε(u) : ε(v) dx −
∫

�

(∇ · v)p dx =
∫

�

f · v dx ∀ v ∈ [H1
0 (�)]d , (1.2a)

−
∫

�

(∇ · u)q dx − 1

λ

∫

�

pq dx = 0 ∀ q ∈ L0
2(�), (1.2b)

where u is the displacement, p = −λ(∇ · u), f ∈ [L2(�)]d is the load density, the
strain tensor ε(v) = 1

2 [(∇v) + (∇v)t ] is the symmetrized gradient of v, and μ and λ

are the Lamé constants.
These two problems are special cases of the following saddle point problem: Find

(u, p) ∈ [H1
0 (�)]d × L0

2(�) such that

B
(
(u, p), (v, q)

) = ( f , v) ∀ (v, q) ∈ [H1
0 (�)]d × L0

2(�), (1.3)

where

B
(
(w, r), (v, q)

) = a(w, v) + b(v, r) + b(w, q) − t (r, q). (1.4)

Here (·, ·) is the L2 inner product, t is a nonnegative number, the bilinear form b(·, ·)
on [H1

0 (�)]d × L0
2(�) is given by

b(v, q) = −
∫

�

(∇ · v)q dx, (1.5)

and a(·, ·) is a symmetric bounded and coercive bilinear form on [H1
0 (�)]d , i.e., there

exist positive constants γb and γc such that
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Multigrid methods for saddle point problems 195

a(v,w) ≤ γb‖v‖H1(�)‖w‖H1(�) ∀ v,w ∈ [H1
0 (�)]d , (1.6)

a(v, v) ≥ γc‖v‖2
H1(�)

∀ v ∈ [H1
0 (�)]d . (1.7)

The Stokes problem (1.1) corresponds to the choice of t = 0 and

a(w, v) = ν

∫

�

∇w : ∇v dx,

while the Lamé problem (1.2) corresponds to the choice of t = 1/λ and

a(w, v) = 2μ

∫

�

ε(w) : ε(v) dx .

The coercivity of the bilinear form a(·, ·) follows from a Poincaré–Friedrichs inequal-
ity (Stokes problem) and a Korn inequality (Lamé problem).

Remark 1.1 The problem (1.3) can be posed for f ∈ [H−1(�)]d , where the integral
on the right-hand side is replaced by the duality pairing 〈 f , v〉.

The problem (1.3) can be discretized by a stable finite element method based on
the finite element spaces Vh (⊂ [H1

0 (�)]d) and Qh (⊂ L0
2(�)) that satisfy the inf-sup

condition. Our goal is to develop multigrid methods for the resulting finite dimensional
saddle point problem that are uniformly convergent in the energy norm ‖ · ‖ defined
by

‖(v, q)‖ = ‖v‖H1(�) + ‖q‖L2(�),

i.e., the multigrid method is a contraction with respect to the energy norm and the
contraction number is bounded away from 1 on all grid levels. In fact we will show
that the contraction number for the Stokes (resp. Lamé) problem satisfies an estimate
of the form C/mαS (resp. C/mαL ), where m is the number of smoothing steps, C is
a positive constant independent of grid levels, and αS ∈ (0, 1] (resp. αL ∈ (0, 1]) is
the index of elliptic regularity for the Stokes (resp. Lamé) problem that can be taken
to be 1 if � is convex.

Multigrid methods for the saddle point problem (1.3) have been investigated in
[6,11–13,34,36,42–44,47]. However the multigrid convergence results in these papers
are established with respect to norms different from the energy norm. The analyses in
these papers also require � to be convex and the contraction number bounds in some
of these papers are of the form C/

√
m.

The key ingredients of our multigrid methods are two new smoothers. Let Bh :
Vh × Qh −→ Vh × Qh be the linear operator that represents B(·, ·) with respect to
an inner product [·, ·]h that satisfies

[(vh, qh), (vh, qh)]h ≈ ‖vh‖2
L2(�) + h2‖qh‖2

L2(�) ∀ (vh, qh) ∈ Vh × Qh . (1.8)
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196 S. C. Brenner et al.

In the post-smoothing step, we take the smoother for an equation of the form

Bh(wh, rh) = (gh, zh)

to be the Richardson relaxation for the equivalent equation

BhShBh(wh, rh) = BhSh(gh, zh),

where the operator Sh is symmetric positive definite (SPD) and

[BhShBh(vh, qh), (vh, qh)]h ≈ ‖vh‖2
H1(�)

+ ‖qh‖2
L2(�). (1.9)

The construction of Sh involves an optimal preconditioner for the discrete Laplace
operator and the property (1.9) relies on the inf-sup condition for Vh and Qh .

In the pre-smoothing step, we use a smoother that is dual (with respect to the
bilinear form B(·, ·)) to the post-smoother, which allows us to deduce immediately its
smoothing property from the smoothing property of the post-smoother.

Remark 1.2 Because of (1.8) and (1.9), we can use the operator BhShBh to define
mesh-dependent norms (cf. (4.1)) that are related to Sobolev norms and obtain smooth-
ing and approximation properties (cf. Lemmas 5.1, 5.4) that are similar to those of
second order scalar elliptic problems. Therefore we can apply multigrid techniques
originally invented for SPD problems [7,10,28,33,40] to handle saddle point problems
on general polygonal domains where the full elliptic regularity is not available.

Remark 1.3 Since an optimal preconditioner for the discrete Laplace operator is used
in the smoothing steps, our multigrid method can also be viewed as a preconditioned
iterative method for saddle point problems. Other preconditioned iterative methods
for saddle problems are discussed in [4,22,23,31,41] and the references therein. (See
Sect. 7 for further discussions.)

The rest of the paper is organized as follows. In Sect. 2 we consider various aspects of
the saddle point problem (1.3) that are relevant to the multigrid convergence analysis.
The new multigrid methods are introduced in Sect. 3. In Sect. 4 we establish properties
of certain mesh-dependent norms that are useful for the convergence analysis of the
W -cycle algorithm in Sect. 5. Numerical results that illustrate the performance of the
multigrid methods on two dimensional domains are presented in Sect. 6 and we end
with some concluding remarks in Sect. 7. Appendix contains the proof of an elliptic
regularity estimate for the two dimensional Lamé system that is robust with respect to
the Lamé constant λ.

2 The saddle point problem (1.3)

In this section we discuss conditions on the saddle point problem (1.3) under which
the convergence of the W -cycle multigrid method will be established. We begin with
properties of the bilinear forms. Then we will consider elliptic regularity and finite
element discretizations.
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Multigrid methods for saddle point problems 197

2.1 Properties of the bilinear forms

From (1.4), (1.5) and (1.6) we immediately see that the bilinear form B(·, ·) is bounded
with respect to the energy norm:

B
(
(v, q), (w, r)

) ≤ Cγb,t (‖v‖H1(�) + ‖q‖L2(�))(‖w‖H1(�) + ‖r‖L2(�)) (2.1)

for all (v, q), (w, r) ∈ [H1
0 (�)]d × L0

2(�). We will assume that

0 ≤ t ≤ t∗ < ∞, (2.2)

which is the relevant range for the Stokes and Lamé problems.
The bilinear form b(·, ·) satisfies the following inf-sup condition (cf. [24]):

inf
0 �=q∈L0

2(�)

sup
0 �=v∈[H1

0 (�)]d

b(v, q)

|v|H1(�)‖q‖L2(�)

≥ βc > 0, (2.3)

which together with (1.6) and (1.7) implies that (1.3) is well-posed (cf. [18,
Sect. II.1.2]).

2.2 Elliptic regularity

The theory of elliptic regularity for the Stokes and Lamé problems can be found for
example in the monographs [20,25–27,29,32].

For the Stokes problem (1.1), there exists αS ∈ ( 1
2 , 1

]
such that the solution (u, p)

belongs to [H1+α(�)]d × Hα(�) for 0 ≤ α ≤ αS if f ∈ [H−1+α(�)]d , and we have

‖u‖H1+α(�) + ‖p‖Hα(�) ≤ C�,ν0‖ f ‖H−1+α(�) (2.4)

that is valid for ν ≥ ν0 > 0. The index of elliptic regularity αS = 1 if � is convex and
αS < 1 if � is nonconvex.

For the Lamé problem (1.2), there exists αL ∈ ( 1
2 , αS

]
such that the solution (u, p)

belongs to [H1+α(�)]d × Hα(�) for 0 ≤ α ≤ αL if f ∈ [H−1+α(�)]d , and we have

‖u‖H1+α(�) + ‖p‖Hα(�) ≤ C�,μ0,μ1,λ0,λ1‖ f ‖H−1+α(�) (2.5)

that is valid for 0 < μ0 ≤ μ ≤ μ1 < ∞ and 0 < λ0 ≤ λ ≤ λ1 < ∞. The index of
elliptic regularity αL = 1 if � is convex and αL ≤ αS < 1 if � is nonconvex.

In the two dimensional case, we can take advantage of the results in [1] to derive a
robust regularity estimate with respect to λ. The proof of the following proposition is
given in the Appendix.

Proposition 2.1 Let μ0, μ1 and λ0 be positive numbers. There exists a positive con-
stant C�,μ0,μ1,λ0 such that the estimate

‖u‖H1+α(�) + ‖p‖Hα(�) ≤ C�,μ0,μ1,λ0‖ f ‖H−1+α(�) (2.6)
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198 S. C. Brenner et al.

holds for the solution (u, p) of (1.2) with d = 2, provided μ0 ≤ μ ≤ μ1, λ0 ≤ λ < ∞
and 0 ≤ α ≤ αL .

In view of (2.4) and (2.5), we will assume from here on that the solution of (1.3)
satisfies

‖u‖H1+α(�) + ‖p‖Hα(�) ≤ CE‖ f ‖H−1+α(�) (2.7)

for some α ∈ ( 1
2 , 1

]
, which is crucial for establishing the approximation property of

multigrid methods.

2.3 Finite element methods

Let Th be a triangulation of �, where the mesh parameter h is proportional to the
maximum of the diameters of the element domains in the triangulation. Let Vh ⊂
[H1

0 (�)]d and Qh ⊂ L0
2(�) be finite element spaces associated with Th . The discrete

problem for (1.3) is to find (uh, ph) ∈ Vh × Qh such that

B
(
(uh, ph), (v, q)

) = ( f , v) ∀ (v, q) ∈ Vh × Qh . (2.8)

We assume the finite element pair Vh × Qh satisfies a discrete inf-sup condition:

inf
0 �=q∈Qh

sup
0 �=v∈Vh

b(v, q)

‖v‖H1(�)‖q‖L2(�)

≥ βd > 0, (2.9)

where βd is independent of h.
It follows from (1.6), (1.7) and (2.9) (cf. [18, Sect. II.1.2]) that

‖v‖H1(�) + ‖q‖L2(�) ≤ C sup
(0,0) �=(w,r)∈Vh×Qh

B
(
(v, q), (w, r)

)
‖w‖H1(�) + ‖r‖L2(�)

∀ (v, q) ∈ Vh × Qh, (2.10)

where the positive constant C depends only on the constants in (1.6), (1.7) and βd . The
estimate (2.10) implies that (2.8) is well-posed and, together with (2.1), also implies
a quasi-optimal discretization error estimate [18, Sect. II.2.4]

‖u−uh‖H1(�)+‖p− ph‖L2(�) ≤ C

(
inf

v∈Vh
‖u − v‖H1(�) + inf

q∈Qh
‖p − q‖L2(�)

)
,

(2.11)

where the positive constant C depends only on the constants in (1.6), (1.7), (2.2) and
(2.9).

We assume that the finite element spaces Vh and Qh enjoy the following approxi-
mation properties:
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Multigrid methods for saddle point problems 199

inf
v∈Vh

‖ζ − v‖H1(�) ≤ Chα‖ζ‖H1+α(�) ∀ ζ ∈ [H1
0 (�)]d ∩ [H1+α(�)]d , (2.12)

inf
q∈Qh

‖μ − q‖L2(�) ≤ Chα‖μ‖Hα(�) ∀μ ∈ L0
2(�) ∩ Hα(�), (2.13)

where the positive constant depends only on the shape regularity of Th . It then follows
from (2.7), (2.11), (2.12) and (2.13) that

‖u − uh‖H1(�) + ‖p − ph‖L2(�) ≤ Chα‖ f ‖H−1+α(�), (2.14)

where the positive constant C depends on the shape regularity of Th and the constants
in (1.6), (1.7), (2.2) and (2.9).

The assumptions on Vh and Qh are satisfied by many finite element pairs, such as the
Taylor–Hood elements and the MINI element (cf. [5,18,24] and the references therein).
For concreteness we will use the P2 − P1 Taylor–Hood element in the multigrid
methods. But the results can also be extended to other finite element methods.

3 Multigrid methods

Let T0 be an initial triangulation of � and the triangulation Tk (k ≥ 1) be generated
from Tk−1 through uniform refinement. The mesh parameter for Tk is denoted by hk

and we have hk = 1
2 hk−1. Let Vk ⊂ [H1

0 (�)]d (resp. Qk ⊂ L0
2(�)) be the continuous

P2 (resp. P1) Lagrange finite element space associated with Tk . Then V0 × Q0 ⊂
V1 × Q1 ⊂ · · · and the kth level finite element approximation (uk, pk) ∈ Vk × Qk

for (1.3) is defined by

B
(
(uk, pk), (v, q)

) = ( f , v) ∀ (v, q) ∈ Vk × Qk . (3.1)

Let Nk,1 (resp. Nk,2) be the set of the nodes of the continuous P1 (resp. P2) finite
element space associated with Tk . The mesh-dependent inner products on Vk and Qk

are defined by

((v,w))k = hd
k

∑
x∈Nk,2

v(x) · w(x) ∀ v,w ∈ Vk, (3.2a)

(q, r)k = hd+2
k

∑
x∈Nk,1

q(x)r(x) ∀ q, r ∈ Qk, (3.2b)

and the mesh-dependent inner product [·, ·]k on Vk × Qk is given by

[(v, q), (w, r)]k = ((v,w))k + (q, r)k . (3.3)

Let the operator Bk : Vk × Qk −→ Vk × Qk be defined by

[Bk(w, r), (v, q)]k = B
(
(w, r), (v, q)

) ∀ (v, q), (w, r) ∈ Vk × Qk . (3.4)
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200 S. C. Brenner et al.

Then Bk is nonsingular and also symmetric with respect to [·, ·]k . We can rewrite (3.1)
as

Bk(uk, pk) = ( f k, 0), (3.5)

where f k ∈ Vk is determined by (( f k, v))k = ( f , v) for all v ∈ Vk .
Below we will construct multigrid methods for equations of the form

Bk(v, q) = (g, z) (3.6)

that includes (3.5) as a special case.
There are two main ingredients in multigrid methods. First we need intergrid transfer

operators that move functions between grids. Since the finite element spaces are nested,
we can take the coarse-to-fine operator I k

k−1 : Vk−1 × Qk−1 −→ Vk × Qk to be the

natural injection. Then we define the fine-to-coarse operator I k−1
k : Vk × Qk −→

Vk−1 × Qk−1 to be the transpose of I k
k−1 with respect to the mesh-dependent inner

products, i.e.,

[I k−1
k (v, q), (w, r)]k−1 = [(v, q), I k

k−1(w, r)]k (3.7)

for all (v, q) ∈ Vk × Qk and (w, r) ∈ Vk−1 × Qk−1.
Next we introduce two smoothers, which provide the second ingredient in multigrid

methods.

3.1 Two smoothers

Let the discrete Laplace operator �k : Vk −→ Vk be defined by

((−�kv,w))k =
∫

�

∇v : ∇w dx ∀ v,w ∈ Vk . (3.8)

We take Lk : Vk −→ Vk to be an optimal preconditioner for −�k such that Lk is
SPD with respect to ((·, ·))k and

κ1 ≤ λmin
(
Lk(−�k)

) ≤ λmax
(
Lk(−�k)

) ≤ κ2, (3.9)

where κ1 and κ2 are positive constants independent of the mesh levels. Then we define
the operator Sk : Vk × Qk −→ Vk × Qk by

Sk(v, q) = (Lkv, h2
kq). (3.10)

It is clear that Sk is SPD with respect to [·, ·]k .

Remark 3.1 There are many choices for the optimal preconditioner Lk , including
multigrid preconditioners [10] and domain decomposition preconditioners [38].
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The first smoother for (3.6) is given by

(vnew, qnew) = (vold, qold) + δkBkSk
(
(g, z) − Bk(vold, qold)

)
, (3.11)

where δk > 0 is a damping factor determined by the condition that the spectral radius
ρ(BkSkBk) satisfies

ρ(BkSkBk) ≤ 1

δk
. (3.12)

This smoother will be used in the post-smoothing steps of the multigrid algorithms.

Remark 3.2 The smoother defined by (3.11) is Richardson relaxation for the equation

BkSkBk(v, q) = BkSk(g, z)

that is equivalent to (3.6).

Remark 3.3 We can take the damping factor δk to be Ch2
k , where the constant C is

independent of the grid levels (cf. Corollary 4.3).

The second smoother for (3.6) is given by

(vnew, qnew) = (vold, qold) + δkSkBk
(
(g, z) − Bk(vold, qold)

)
, (3.13)

which will be used in the pre-smoothing steps of the multigrid algorithms.

Remark 3.4 The definition (3.13) of the pre-smoother is motivated by the fact that it
is dual to the post-smoother with respect to the bilinear form B(·, ·) (cf. (3.16)).

3.2 W -cycle and V -cycle multigrid algorithms

Let the output of the W -cycle algorithm for (3.6) with initial guess (v0, q0) ∈
Vk × Qk and m1 (resp. m2) pre-smoothing (resp. post-smoothing) steps be denoted
by MGW (k, (g, z), (v0, q0), m1, m2). For k = 0, we take MGW (0, (g, z), (v0, q0),

m1, m2) to be B
−1
0 (g, z). For k ≥ 1, we compute MGW (k, (g, z), (v0, q0), m1, m2)

recursively in three steps.

• Pre-smoothing Apply the iteration defined by (3.13) m1 times with initial guess
(v0, q0) to obtain (vm1 , qm1).

• Coarse grid correction Let (g′, z′) = I k−1
k

(
(g, z) − Bk(vm1 , qm1)

)
be the trans-

ferred residual of (vm1 , qm1). We compute (v′
1, q ′

1), (v
′
2, q ′

2) ∈ Vk−1 × Qk−1 by

(v′
1, q ′

1) = MGW (k − 1, (g′, z′), (0, 0), m1, m2),

(v′
2, q ′

2) = MGW (k − 1, (g′, z′), (v′
1, q ′

1), m1, m2),

and take (vm1+1, qm1+1) to be (vm1 , qm1) + I k
k−1(v

′
2, q ′

2).
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202 S. C. Brenner et al.

• Post-smoothing Apply the iteration defined by (3.11) m2 times with initial guess
(vm1+1, qm1+1) to obtain (vm1+m2+1, qm1+m2+1).

The final output is MGW (k, (g, z), (v0, q0), m1, m2) = (vm1+m2+1, qm1+m2+1).
We denote by MGV (k, (g, z), (v0, q0), m1, m2) the output of the V -cycle algo-

rithm for (3.6) with initial guess (v0, q0) ∈ Vk × Qk and m1 (resp. m2) pre-smoothing
(resp. post-smoothing) steps. The computation of MGV (k, (g, z), (v0, q0), m1, m2)

is identical with the computation for the W -cycle algorithm except in the coarse grid
correction step, where we compute

(v′
1, q ′

1) = MGV (k − 1, (g′, z′), (0, 0), m1, m2)

and take(vm1+1, qm1+1) to be (vm1 , qm1) + I k
k−1(v

′
1, q ′

1).

Remark 3.5 In this paper we will only establish the uniform convergence of the W -
cycle algorithm (cf. Sect. 5). But numerical results (cf. Sect. 6) indicate that the V -cycle
algorithm is also uniformly convergent.

3.3 Error propagation operators

The effect of one post-smoothing step defined by (3.11) is measured by the operator

Rk = I dk − δkBkSkBk, (3.14)

where I dk is the identity operator on Vk × Qk . On the other hand the effect of one
pre-smoothing step defined by (3.13) is measured by the operator

Sk = I dk − δkSkB
2
k . (3.15)

The following relation between the two operators Rk and Sk is a simple consequence
of (3.4), (3.14) and (3.15):

B
(
Rk(v, q), (w, r)

) = B
(
(v, q), Sk(w, r)

) ∀(v, q), (w, r) ∈ Vk × Qk . (3.16)

The error propagation operator Ek : Vk × Qk −→ Vk × Qk for the multigrid
algorithms satisfies a well-known recursive relation:

Ek = Rm2
k (I dk − I k

k−1 Pk−1
k + I k

k−1 E p
k−1 Pk−1

k )Sm1
k , (3.17)

where p = 2 (resp. p = 1) for the W -cycle (resp. V -cycle) algorithm, and Pk−1
k :

Vk × Qk −→ Vk−1 × Qk−1 is the transpose of I k
k−1 with respect to the bilinear form

B(·, ·), i.e.,
B

(
Pk−1

k (v, q), (w, r)
) = B

(
(v, q), I k

k−1(w, r)
)

(3.18)

for all (v, q) ∈ Vk × Qk and (w, r) ∈ Vk−1 × Qk−1. By construction we also have
E0 = 0.
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Since I k
k−1 is the natural injection, the operator Pk−1

k is just the restriction to Vk×Qk

of the Ritz projection from [H1
0 (�)]d × L0

2(�) to Vk−1 × Qk−1. In particular, we have

Pk−1
k I k

k−1 = I dk−1, (I dk − I k
k−1 Pk−1

k )2 = I dk − I k
k−1 Pk−1

k , (3.19)

and the Galerkin orthogonality

0 = B
(
(I dk − I k

k−1 Pk−1
k )(v, q), I k

k−1(w, r)
)

(3.20)

that holds for all (v, q) ∈ Vk × Qk and (w, r) ∈ Vk−1 × Qk−1.

4 Mesh-dependent norms

In this section we introduce mesh-dependent norms which are useful tools for the
convergence analysis of the W -cycle algorithm in Sect. 5. In order to avoid the pro-
liferation of constants, from now on we will use A � B (or B � A) to represent the
inequality A ≤ (constant)B, where the positive constant is independent of the grid
size and the grid level. The statement A ≈ B is equivalent to A � B and B � A.

For 0 ≤ s ≤ 1, we use the SPD operator BkSkBk to define the first family of
mesh-dependent norms ‖ · ‖s,k by

‖(v, q)‖2
s,k = [(BkSkBk)

s(v, q), (v, q)]k ∀ (v, q) ∈ Vk × Qk . (4.1)

It follows immediately from (3.2) and standard discrete estimates [16,19] that

((v, v))k ≈ ‖v‖2
L2(�) ∀ v ∈ Vk, (4.2a)

(q, q)k ≈ h2
k‖q‖2

L2(�) ∀ q ∈ Qk . (4.2b)

The estimates in (4.2) and the definitions (3.3) and (4.1) imply

‖(v, q)‖2
0,k = [(v, q), (v, q)]k ≈ ‖v‖2

L2(�) + h2
k‖q‖2

L2(�) ∀ (v, q) ∈ Vk × Qk .

(4.3)

Lemma 4.1 We have

‖(v, q)‖1,k ≈ ‖v‖H1(�) + ‖q‖L2(�) ∀ (v, q) ∈ Vk × Qk . (4.4)

Proof From (2.1) and (2.10) we have

‖v‖H1(�) + ‖q‖L2(�) ≈ sup
(0,0)�=(w,r)∈Vk×Qk

B(
(v, q), (w, r)

)
‖w‖H1(�) + ‖r‖L2(�)

∀ (v, q) ∈ Vk × Qk .

(4.5)
By construction (cf. (3.8) and (3.9)) we also have

((L−1
k w,w))k ≈ (((−�k)w,w))k = |w|2H1(�)

≈ ‖w‖2
H1(�)

∀w ∈ Vk,
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which together with (3.3), (3.10) and (4.2b) implies

[S−1
k (w, r), (w, r)]k = ((L−1

k w,w))k + h−2
k (r, r)k

≈ ‖w‖2
H1(�)

+ ‖r‖2
L2(�) ∀ (w, r) ∈ Vk × Qk . (4.6)

Let (v, q) ∈ Vk × Qk be arbitrary and (z, g) = SkBk(v, q). It follows from (3.4),
(4.1), (4.5), (4.6) and duality that

‖(v, q)‖1,k = [BkSkBk(v, q), (v, q)]
1
2
k

= [S−1
k (SkBk)(v, q), (SkBk)(v, q)]

1
2
k

= [S−1
k (z, g), (z, g)]

1
2
k

= sup
(0,0) �=(w,r)∈Vk×Qk

[S−1
k (z, g), (w, r)]k

[S−1
k (w, r), (w, r)]

1
2
k

≈ sup
(0,0) �=(w,r)∈Vk×Qk

[Bk(v, q), (w, r)]k

‖w‖H1(�) + ‖r‖L2(�)

= sup
(0,0) �=(w,r)∈Vk×Qk

B
(
(v, q), (w, r)

)
‖w‖H1(�) + ‖r‖L2(�)

≈ ‖v‖H1(�) + ‖q‖L2(�).

��
Corollary 4.2 We have

‖Pk−1
k (v, q)‖1,k−1 � ‖(v, q)‖1,k ∀ (v, q) ∈ Vk × Qk . (4.7)

Proof Since I k
k−1 is the natural injection, we have an obvious estimate

‖I k
k−1(w, r)‖1,k ≈ ‖(w, r)‖1,k−1 ∀ (w, r) ∈ Vk−1 × Qk−1 (4.8)

because of (4.4).
The estimate (4.7) follows from (2.1), (3.18), (4.4), (4.5) and (4.8). ��

Corollary 4.3 The spectral radius of the operator BkSkBk is bounded by Ch−2
k , where

the positive constant C is independent of grid sizes and grid levels.

Proof It follows from (4.1), (4.3), (4.4) and the Rayleigh quotient formula that

λmax(BkSkBk) = max
(0,0) �∈(v,q)

[BkSkBk(v, q), (v, q)]k

[(v, q), (v, q)]k

= max
(0,0) �∈(v,q)

‖(v, q)‖2
1,k

‖(v, q)‖2
0,k

≤ C max
(0,0) �∈(v,q)

‖v‖2
H1(�)

+ ‖q‖2
L2(�)

‖v‖2
L2(�) + h2

k‖q‖2
L2(�)

≤ Ch−2
k ,

where the last inequality comes from a standard inverse estimate [16,19]. ��
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The next result provides a link between a mesh-dependent norm and certain Sobolev
norms.

Lemma 4.4 We have

‖(v, q)‖1−α,k ≈ ‖v‖H1−α(�) + hα
k ‖q‖L2(�) ∀ (v, q) ∈ Vk × Qk, (4.9)

where α ∈ ( 1
2 , 1

]
is the index of elliptic regularity in (2.7).

Proof Since Vk × Qk is a subspace of [H1
0 (�)]d × L0

2(�), we have

‖v‖H1−α(�) + hα
k ‖q‖L2(�) � ‖(v, q)‖1−α,k ∀ (v, q) ∈ Vk × Qk

by (4.1), (4.3), (4.4) and interpolation [37,39].
Let �k : [L2(�)]d −→ Vk be the L2 orthogonal projection. It is well-known (cf.

[9]) that
‖�kζ‖H1(�) � ‖ζ‖H1(�) ∀ ζ ∈ [H1

0 (�)]d ,

which implies by (4.1), (4.3), (4.4) and interpolation

‖(�kζ , 0)‖1−α,k � ‖ζ‖H1−α(�) ∀ ζ ∈ [H1−α(�)]d . (4.10)

Similarly we have

‖(0, πkξ)‖1−α,k � hα
k ‖ξ‖L2(�) ∀ ξ ∈ L0

2(�), (4.11)

where πk : L0
2(�) −→ Qk is the L2 orthogonal projection.

Applying (4.10) to ζ = v and (4.11) to ξ = q we arrive at the estimate in the other
direction:

‖(v, q)‖1−α,k � ‖v‖H1−α(�) + hα
k ‖q‖L2(�) ∀ (v, q) ∈ Vk × Qk .

��
For 1 ≤ s ≤ 2, we define a second family of mesh-dependent norms ||| · |||s,k by

duality:

|||(v, q)|||s,k = sup
(0,0) �=(w,r)∈Vk×Qk

B
(
(v, q), (w, r)

)
‖(w, r)‖2−s,k

∀ (v, q) ∈ Vk × Qk . (4.12)

It follows immediately from (4.4), (4.5) and (4.12) that

|||(v, q)|||1,k ≈ ‖v‖H1(�) + ‖q‖L2(�) ≈ ‖(v, q)‖1,k ∀ (v, q) ∈ Vk × Qk . (4.13)

Note also that (4.12) implies

B
(
(v, q), (w, r)

) ≤ |||(v, q)|||s,k‖(w, r)‖2−s,k ∀ (v, q), (w, r)∈Vk × Qk, 1 ≤ s ≤2.

(4.14)
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5 Convergence analysis for the W -cycle algorithm

We follow the classical approach in [3] for the analysis of the W -cycle algorithm,
which is based on the smoothing and approximation properties.

5.1 Smoothing property

We have a standard smoothing property for Rk since the damping factor δk = Ch2
k

(cf. Remark 3.3) satisfies condition (3.12).

Lemma 5.1 The following estimate holds for the operator Rk :

‖Rm
k (v, q)‖1,k � h−τ

k m−τ/2‖(v, q)‖1−τ,k ∀ (v, q) ∈ Vk × Qk, 0 ≤ τ ≤ 1. (5.1)

Proof Let (v, q) ∈ Vk × Qk be arbitrary. It follows from (3.12), (3.14), (4.1) and the
spectral theorem that

‖Rm
k (v, q)‖2

1,k = [BkSkBk(I dk − δkBkSkBk)
m(v, q), (I dk − δkBkSkBk)

m(v, q)]k

= δ−τ
k [(BkSkBk)

1−τ (δkBkSkBk)
τ (I dk −δkBkSkBk)

m(v, q), (I dk −δkBkSkBk)
m(v, q)]k

� h−2τ
k max

0≤x≤1
[(1 − x)2m xτ ][(BkSkBk)

1−τ (v, q), (v, q)]k

� h−2τ
k m−τ‖(v, q)‖2

1−τ,k .

��
Remark 5.2 In the special case where τ = 0, the arguments in the proof of Lemma 5.1
lead to the following estimate:

‖Rm
k (v, q)‖1,k ≤ ‖(v, q)‖1,k ∀ (v, q) ∈ Vk × Qk . (5.2)

Remark 5.3 The smoothing property (5.1) for Rk implies a corresponding smoothing
property for the operator Sk through duality. But we will only need the estimate

‖Sk(v, q)‖1,k � ‖(v, q)‖1,k ∀ (v, q) ∈ Vk × Qk (5.3)

that follows immediately from (3.16), (4.12), (4.13) and (5.2).

5.2 Approximation property

Recall α ∈ ( 1
2 , 1

]
is the index of elliptic regularity in (2.7).

Lemma 5.4 We have, for k ≥ 1,

‖(I dk − I k
k−1 Pk−1

k )(v, q)‖1−α,k � hα
k ‖(v, q)‖1,k ∀ (v, q) ∈ Vk × Qk .
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Proof Let (v, q) ∈ Vk × Qk be arbitrary and (ζ , μ) = (I dk − I k
k−1 Pk−1

k )(v, q). In
view of (4.9), it suffices to show that

‖ζ‖H1−α(�) + hα
k ‖μ‖L2(�) � hα

k ‖(v, q)‖1,k .

The estimate for μ follows immediately from (4.4), (4.7) and (4.8):

‖μ‖L2(�) � ‖(ζ , μ)‖1,k = ‖(I dk − I k
k−1 Pk−1

k )(v, q)‖1,k � ‖(v, q)‖1,k .

We will prove the estimate for ζ by a duality argument.
Let χ ∈ [H−1+α(�)]d be arbitrary, (ξ , θ) ∈ [H1

0 (�)]d × L0
2(�) satisfy

B
(
(ξ , θ), (w, r)

) = 〈χ ,w〉 ∀ (w, r) ∈ [H1
0 (�)]d × L0

2(�), (5.4)

and (ξ k−1, θk−1) ∈ Vk−1 × Qk−1 satisfy

B
(
(ξ k−1, θk−1), (w, r)

) = 〈χ ,w〉 ∀ (w, r) ∈ Vk−1 × Qk−1. (5.5)

It follows from (2.1), (3.20), (4.4), (5.4) and (5.5) that

〈χ , ζ 〉 = B
(
(ξ , θ), (ζ , μ)

)
= B

(
(ξ , θ), (I dk − I k

k−1 Pk−1
k )(v, q)

)
= B

(
(ξ , θ) − (ξ k−1, θk−1), (I dk − I k

k−1 Pk−1
k )(v, q)

)
= B

(
(ξ , θ) − (ξ k−1, θk−1), (v, q)

)
� (‖ξ − ξ k−1‖H1(�) + ‖θ − θk−1‖L2(�))‖(v, q)‖1,k,

which together with the discretization error estimate (2.14) yields

〈χ , ζ 〉 � hα
k ‖χ‖H−1+α(�)‖(v, q)‖1,k ∀χ ∈ [H−1+α(�)]d . (5.6)

The estimate for ζ follows from (5.6) and duality. ��

5.3 Convergence of the W -cycle algorithm

We begin with the two-grid algorithm where the coarse grid residual equation is solved
exactly. In view of (3.17), the error propagation operator for the two-grid algorithm
is given by Rm2

k (I dk − I k
k−1 Pk−1

k )Sm1
k . We will divide the analysis of the two-grid

algorithm into three cases.
In the first case we assume m1 = 0 and m2 = m, i.e., we have a one-sided algorithm

with only post-smoothing. It follows from Lemmas 5.1 and 5.4 that
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‖Rm
k (I dk − I k

k−1 Pk−1
k )(v, q)‖1,k � (h−α

k m−α/2)‖(I dk − I k
k−1 Pk−1

k )(v, q)‖1−α,k

� (h−α
k m−α/2)hα

k ‖(v, q)‖1,k

= m−α/2‖(v, q)‖1,k ∀(v, q) ∈ Vk × Qk .

(5.7)

In the second case we assume m2 = 0 and m1 = m, i.e., we have a one-sided
algorithm with only pre-smoothing. From (3.16), (3.18), (4.12), (4.14) and (5.7) we
find

|||(I dk − I k
k−1 Pk−1

k )Sm
k (v, q)|||1,k

= sup
(0,0) �=(w,r)∈Vk×Qk

B
(
(I dk − I k

k−1 Pk−1
k )Sm

k (v, q), (w, r)
)

‖(w, r)‖1,k

= sup
(0,0) �=(w,r)∈Vk×Qk

B
(
(v, q), Rm

k (I dk − I k
k−1 Pk−1

k )(w, r)
)

‖(w, r)‖1,k

≤ sup
(0,0) �=(w,r)∈Vk×Qk

|||(v, q)|||1,k‖Rm
k (I dk − I k

k−1 Pk−1
k )(w, r)‖1,k

‖(w, r)‖1,k

� m−α/2|||(v, q)|||1,k ∀ (v, q) ∈ Vk × Qk . (5.8)

In the last case we assume m1, m2 ≥ 1. From (3.18), (3.19), (4.13), (5.7) and (5.8)
we have

‖Rm2
k (I dk − I k

k−1 Pk−1
k )Sm1

k (v, q)‖1,k

= ‖Rm2
k (I dk − I k

k−1 Pk−1
k )(I dk − I k

k−1 Pk−1
k )Sm1

k (v, q)‖1,k

� m−α/2
2 ‖(I dk − I k

k−1 Pk−1
k )Sm1

k (v, q)‖1,k

≈ m−α/2
2 |||(I dk − I k

k−1 Pk−1
k )Sm1

k (v, q)|||1,k

� m−α/2
2 m−α/2

1 |||(v, q)|||1,k ≈ (m1m2)
−α/2‖(v, q)‖1,k ∀ (v, q) ∈ Vk × Qk .

(5.9)

Combining (4.13) and (5.7), (5.8), (5.9), we have the following estimate for the
two-grid algorithm:

‖Rm2
k (I dk − I k

k−1 Pk−1
k )Sm1

k (v, q)‖1,k

≤ C∗
(

max(1, m1) max(1, m2)
)−α/2‖(v, q)‖1,k (5.10)

for all (v, q) ∈ Vk × Qk , where the positive constant C∗ is independent of k.
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We can now use the two-grid estimate (5.10) and a perturbation argument to analyze
the W -cycle algorithm.

Theorem 5.5 Let Ek be the error propagation operator for the kth level W -cycle
algorithm. For any C† > C∗ (the constant in (5.10)), there exists a positive number
m∗ (independent of k) such that

‖Ek(v, q)‖1,k ≤ C†
(

max(1, m1) max(1, m2)
)−α/2‖(v, q)‖1,k (5.11)

for all (v, q) ∈ Vk × Qk and k ≥ 0, provided max(1, m1) max(1, m2) ≥ m∗.

Proof We will derive (5.11) by mathematical induction. The estimate (5.11) is trivially
true for k = 0 since E0 = 0.

Let m = max(1, m1) max(1, m2). Suppose (5.11) is valid for k = j − 1. From
(4.7), (4.8), (5.2), (5.3) and the induction hypothesis, we have

‖Rm2
j I j

j−1 E2
j−1 P j−1

j Sm1
j (v, q)‖1, j ≤ C�C2

† m−α‖(v, q)‖1, j

for all (v, q) ∈ Vj × Q j , where the positive constant C� is independent of j . The
relation (3.17) for p = 2 and the estimate (5.10) imply

‖E j (v, q)‖1, j = ‖Rm2
j (I d j − I j

j−1 P j−1
j )Sm1

j (v, q)+Rm2
j I j

j−1 E2
j−1 P j−1

j Sm1
j (v, q)‖1, j

≤ [
C∗m−α/2 + C�C2

† m−α
]‖(v, q)‖1, j .

Let m∗ > 0 satisfy

C�C2
† m−α/2∗ ≤ C† − C∗.

Then, for m ≥ m∗, we have

C∗m−α/2 + C�C2
† m−α ≤ m−α/2(C∗ + C�C2

† m−α/2∗ ) ≤ C†m−α/2,

which completes the proof. ��
Remark 5.6 The constant C∗ in (5.10) depends only on the shape regularity of the
triangulation T0 and the constants in (1.6), (1.7), (2.2), (2.7), (2.9) and (3.9). This
also holds for the constants C† and m∗ in Theorem 5.5 if for example we take C†
to be 2C∗. For the two dimensional Lamé problem, Proposition 2.1 implies that the
estimates (5.10) and (5.11) are robust with respect to the Lamé constant λ.

We can draw the following conclusion from (4.4) and (5.11). If max(1, m1) max
(1, m2) (independent of k) is sufficiently large, then the W -cycle algorithm for the
saddle point problem (1.3) is uniformly convergent with respect to the energy norm,
i.e., the W -cycle algorithm is a contraction with respect to the energy norm and the
contraction number is bounded away from 1 for all k. In particular this result holds
for the Stokes problem (1.1) and the Lamé problem (1.2) discretized by the P2-P1
Taylor–Hood element.
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Remark 5.7 With a slight modification of the smoothing precess we can also estab-
lish O(1/mα) contraction number estimates for one-sided algorithms with respect to
appropriate mesh-dependent norms.

If in the one-sided algorithm with only pre-smoothing we apply m smoothing steps
defined by (3.11) followed by m smoothing steps defined by (3.13), then for the
corresponding two-grid algorithm we have the estimate

‖(I dk − I k
k−1 Pk−1

k )Sm
k Rm

k (v, q)‖1−α,k

= ‖(I dk − I k
k−1 Pk−1

k )(I dk − I k
k−1 Pk−1

k )Sm
k Rm

k (v, q)‖1−α,k

� hα
k ‖(I dk − I k

k−1 Pk−1
k )Sm

k Rm
k (v, q)‖1,k

≈ hα
k |||(I dk − I k

k−1 Pk−1
k )Sm

k Rm
k (v, q)|||1,k

� hα
k m−α/2|||Rm

k (v, q)|||1,k

� hα
k m−α/2‖Rm

k (v, q)‖1,k

� m−α‖(v, q)‖1−α,k ∀(v, q) ∈ Vk × Qk (5.12)

that follows from (3.19), (4.13), Lemmas 5.1, 5.4 and (5.8).
If in the one-sided algorithm with only post-smoothing we apply m smoothing steps

defined by (3.13) followed by m smoothing steps defined by (3.11), then the estimate
for the corresponding two-grid algorithm is given by

|||Rm
k Sm

k (I dk − I k
k−1 Pk−1

k )(v, q)|||1+α,k � m−α|||(v, q)|||1+α,k ∀(v, q) ∈ Vk × Qk,

(5.13)
which follows from (3.16), (3.18), (4.12), (4.14) and (5.12).

Uniform convergence of the W -cycle in the norm ‖ · ‖1−α,k (resp. ||| · |||1+α,k) for
the one-sided algorithm with only pre-smoothing (resp. post-smoothing) follows from
(5.12) (resp. (5.13)) and arguments similar to the ones in the proof of Theorem 5.5.

6 Numerical results

In this section we report numerical results for the proposed W -cycle and V -cycle
multigrid methods for the Stokes problem and the Lamé problem on two dimensional
domains. In these tests we use the P2-P1 Taylor–Hood finite element in the discretiza-
tion. The operator Lk is generated by the multigrid V(2,2) algorithm for the Laplace
operator.

We first test the W -cycle algorithm for the Stokes problem on the unit square. Note
that in this case we can take the index of elliptic regularity α to be 1. The initial
triangulation T0 consists of eight triangles of the same size (Fig. 1). For k ≥ 1, the kth
level triangulation Tk is obtained from Tk−1 by a uniform refinement.

The contraction numbers of the W -cycle algorithm are listed in Table 1. The
contraction numbers are computed as the largest eigenvalue of the error propaga-
tion operator Ek . The leftmost column displays the numbers (m1, m2) of smoothing
steps in the algorithm, whereas contraction numbers associated with the kth level
triangulation are displayed in the other columns for various k. This table clearly
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Fig. 1 The initial triangulation
of the unit square (left); the
initial triangulation of the
L-shaped domain (right)

Table 1 Contraction numbers
of the W -cycle algorithm for the
Stokes problem on the unit
square

(m1, m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(1, 1) 0.82 0.86 0.86 0.86 0.86 0.86

(2, 2) 0.76 0.78 0.78 0.78 0.78 0.78

(4, 4) 0.66 0.68 0.69 0.69 0.69 0.69

(8, 8) 0.55 0.56 0.56 0.56 0.56 0.56

(16, 16) 0.38 0.39 0.39 0.39 0.39 0.39

(32, 32) 0.19 0.19 0.19 0.19 0.19 0.19

Table 2 Contraction numbers
of the V -cycle algorithm for the
Stokes problem on the unit
square

(m1, m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(1, 1) 0.87 0.90 0.90 0.90 0.90 0.90

(2, 2) 0.76 0.76 0.79 0.80 0.80 0.80

(4, 4) 0.66 0.70 0.70 0.70 0.70 0.70

(8, 8) 0.55 0.57 0.57 0.58 0.58 0.58

(16, 16) 0.38 0.40 0.40 0.40 0.40 0.40

(32, 32) 0.19 0.19 0.20 0.20 0.20 0.20

shows that with our new smoothers, the proposed W -cycle iterations are contrac-
tions, with contraction numbers independent of the grid level k. Furthermore, the
asymptotic rate of decrease (m1m2)

−1/2 for the contraction numbers is observed
in these tests when the number of smoothing steps increases, which agrees with
Theorem 5.5.

The contraction numbers of the V -cycle algorithm for the same problem are pre-
sented in Table 2. It can be observed that, similar to the W -cycle iterations, the multi-
grid V -cycle iterations converge uniformly on all grid levels for the Stokes problem.
The contraction numbers in Table 2 exhibit a similar asymptotic rate of decrease as
m1m2 increases, but they are in general larger than the corresponding numbers in
Table 1.

We also test the W -cycle algorithm on an L-shaped domain, where the kth level
triangulation Tk (k ≥ 1) is obtained by k successive uniform refinements of the initial
triangulation T0 with six triangles (Fig. 1). From the contraction numbers in Table 3 it
is clear that, as predicted by Theorem 5.5, the W -cycle iterations converge uniformly,
independent of the grid level k. It is also observed that the convergence rate is worse
than the rate for the unit square, reflecting the fact that the index of elliptic regularity
α is strictly less than 1 for the L-shaped domain.
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Table 3 Contraction numbers
of the W -cycle algorithm for the
Stokes problem on the L-shaped
domain

(m1, m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(1, 1) 0.88 0.90 0.90 0.90 0.90 0.90

(2, 2) 0.81 0.83 0.84 0.84 0.84 0.84

(4, 4) 0.73 0.75 0.75 0.75 0.75 0.75

(8, 8) 0.63 0.65 0.65 0.65 0.65 0.65

(16, 16) 0.48 0.49 0.49 0.49 0.49 0.49

(32, 32) 0.28 0.29 0.29 0.29 0.29 0.29

Table 4 Contraction numbers
of the W -cycle algorithm for the
Lamé problem on the unit square
with μ = 1 and λ = 500

(m1, m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(1, 1) 0.92 0.93 0.93 0.93 0.93 0.93

(2, 2) 0.93 0.93 0.93 0.93 0.93 0.93

(4, 4) 0.88 0.89 0.90 0.90 0.90 0.90

(8, 8) 0.81 0.83 0.83 0.83 0.83 0.83

(16, 16) 0.70 0.72 0.72 0.72 0.72 0.72

(32, 32) 0.53 0.54 0.54 0.54 0.54 0.54

(64, 64) 0.31 0.32 0.32 0.32 0.32 0.32

Table 5 Contraction numbers
of the V -cycle algorithm for the
Lamé problem on the unit square
with μ = 1 and λ = 500

(m1, m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(1, 1) 0.92 0.94 0.94 0.94 0.94 0.94

(2, 2) 0.93 0.94 0.94 0.94 0.94 0.93

(4, 4) 0.88 0.90 0.90 0.90 0.90 0.90

(8, 8) 0.81 0.83 0.84 0.84 0.84 0.84

(16, 16) 0.70 0.73 0.73 0.73 0.73 0.73

(32, 32) 0.53 0.55 0.54 0.55 0.55 0.55

(64, 64) 0.31 0.32 0.32 0.32 0.32 0.32

Table 6 Contraction numbers
of the W -cycle algorithm for the
Lamé problem on the L-shaped
domain with μ = 1 and λ = 500

(m1, m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(1, 1) 0.94 0.95 0.95 0.95 0.95 0.95

(2, 2) 0.94 0.95 0.95 0.95 0.95 0.95

(4, 4) 0.91 0.92 0.92 0.92 0.92 0.92

(8, 8) 0.85 0.87 0.87 0.87 0.87 0.87

(16, 16) 0.76 0.79 0.79 0.79 0.79 0.79

(32, 32) 0.62 0.64 0.64 0.64 0.64 0.64

In addition we also list in Tables 4, 5 and 6 the contraction numbers of the multigrid
W -cycle and V -cycle algorithms for the Lamé problem on both the unit square and
the L-shaped domain. We take μ = 1 and λ = 500 to be the Lamé constants. It is
clear that the proposed multigrid iterations converge uniformly independent of the
grid level on both domains and the contraction numbers decrease when we increase
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Table 7 Contraction numbers
of the W -cycle algorithm for the
Lamé problem on the unit square
with μ = 1 and k = 5

(m1, m2)\λ λ = 100 λ = 101 λ = 102 λ = 103

(1, 1) 0.96 0.95 0.92 0.93

(2, 2) 0.93 0.93 0.92 0.93

(4, 4) 0.87 0.87 0.88 0.90

(8, 8) 0.76 0.79 0.81 0.83

(16, 16) 0.62 0.67 0.68 0.72

(32, 32) 0.48 0.47 0.49 0.55

the number of smoothing steps. The rate of decrease for the contraction numbers is
also approaching the asymptotic rate of (m1m2)

−1/2.
Finally in Table 7 we present the contraction numbers of the W -cycle algorithm

for the Lamé problem on the unit square for k = 5 and various values of λ and
m(= m1 = m2). The robustness of the performance with respect to λ is clearly
visible.

7 Concluding remarks

In this paper we develop new multigrid methods for a class of saddle point problems
that include the Stokes system in fluid flow and the Lamé system in linear elasticity
as special cases. The crucial ingredients are two new smoothers that take advantage
of the discrete inf-sup condition and duality, which allows the convergence analysis
of the W -cycle algorithm to be carried out by techniques originally invented for SPD
problems.

We have established the uniform convergence of the W -cycle algorithm for a suf-
ficiently large number of smoothing steps. But numerical results indicate that the
W -cycle and V -cycle algorithms are uniformly convergent with only one smoothing
step. Since our new multigrid methods can be analyzed through the connection of
the saddle point problem to an equivalent SPD problem, we expect that the multi-
plicative convergence theory for the V -cycle algorithm with one smoothing step (cf.
[10,45,46] and the references therein) can be extended to our V -cycle method, and
that the decrease of the contraction number as the number of smoothing steps increases
can be established by extending the additive convergence theory in [14,15].

Our approach can also be applied to other saddle point problems arising from the
discretizations of boundary value problems by mixed finite element methods [31].
The key is to exploit the inf-sup condition and the multigrid theory for SPD problems
associated with the relevant function spaces.

As mentioned in Remark 1.3, there are many preconditioned iterative methods for
saddle point problems. For example one can apply the preconditioned MINRES [22]
algorithm with Sh as the preconditioner. It turns out that the preconditioned MINRES is
about twice as fast as our multigrid method, but it also requires about twice the amount
of memory as the multigrid method, if no matrix is formed in the implementation of
the two algorithms. Note that our multigrid method can be applied to certain related
nonsymmetric saddle point problems, such as those arising from mixed finite element
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methods for the Oseen equation, with similar performance and identical memory
requirement (cf. [8] for the case of convection–diffusion equation). On the other hand,
if the preconditioned MINRES is replaced by the (restarted) preconditioned GMRES
for such problems, then even more memory would be required and the performance
would also suffer from the many matrix-vector products that must be carried out in
each iteration. It would be interesting to compare the performance of our new multigrid
methods with other methods for symmetric and nonsymmetric saddle point problems
related to the Stokes and Lamé systems. We note that some numerical comparisons
for iterative methods for the Stokes problem have been carried out in [30,35].

8 Appendix: Proof of Proposition 2.1

Since the case where αL = 1 is already covered by the results in [2,17], we will focus
on the case where αL < 1. We will use C to denote a generic positive constant that
only depends on �, μ0, μ1 and λ0.

According to [1, Theorem 3.1], there exists a function w ∈ [H1+α(�)]d ∩[H1
0 (�)]2

such that

∇ · w = ∇ · u and ‖w‖H1+α(�) ≤ C‖∇ · u‖Hα(�). (8.1)

Let z = u − w and r = −(μ + λ)(∇ · u). Then (z, r) ∈ [H1
0 (�)]d × L0

2(�) is the
solution of the following Stokes problem:

μ

∫

�

∇ z : ∇v dx −
∫

�

(∇ · v)r dx = 〈 f + μ�w, v〉 ∀ v ∈ [H1
0 (�)]d , (8.2a)

−
∫

�

(∇ · z)q dx = 0 ∀ q ∈ L0
2(�). (8.2b)

Remark 8.1 In the derivation of (8.2) we have used the fact that an alternative weak
formulation for the Lamé problem is to find u ∈ [H1

0 (�)]d such that

μ

∫

�

∇u : ∇v dx + (μ + λ)

∫

�

(∇ · u)(∇ · v) dx =
∫

�

f · v dx ∀ v ∈ [H1
0 (�)]d .

(8.3)

Since 0 ≤ α ≤ αL ≤ αS , the estimate (2.4) for the Stokes problem (8.2) yields

‖z‖H1+α(�) + ‖r‖Hα(�) ≤ C(‖ f ‖H−1+α(�) + μ‖�w‖H−1+α(�)),

which together with (8.1) and the definitions of z and r implies

‖u‖H1+α(�) + (μ + λ)‖∇ · u‖Hα(�) ≤ C(‖ f ‖H−1+α(�) + (1 + μ)‖∇ · u‖Hα(�)).
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We conclude from the last estimate that

‖u‖H1+α(�) + λ‖∇ · u‖Hα(�) ≤ C‖ f ‖H−1+α(�) (8.4)

provided λ ≥ λ1, where λ1 is a large number depending only on �, μ0 and μ1.
The estimate (2.6) follows from (2.5) and (8.4) since p = −λ(∇ · u).
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