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Abstract. In this paper, we study the interior error estimates of a class of finite volume
element methods (FVEMs) over quadrilateral meshes for elliptic equations. We first derive the
global H1- and L2-norms error estimates for a general case that the exact solution might be singular,

namely, u \in H
3
2
+\epsilon with \epsilon > 0 arbitrarily small. These estimates generalize the existing results that

were established under the regularity assumption u \in H2. Then, we establish negative-norm error
estimates for solutions with different regularity conditions. Finally, we study the interior estimates
to show that the interior error of the FVEMs is bounded by the combination of the best local
approximation error and a proper negative-norm error. We provide numerical results to verify our
interior estimates.
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1. Introduction. The finite volume method (FVM) is an important numerical
tool solving partial differential equations (PDEs) and enjoys great popularity among
engineering computations, especially in computational fluid dynamics. See, for exam-
ple, [10, 13, 19, 20, 27, 29, 30, 32, 39, 37]. During the past several decades, the study
on FVMs has also been an active research area in the computational mathematics
community. See [1, 2, 4, 7, 8, 9, 10, 12, 21, 23, 26, 29, 36, 38, 42] and the references
cited therein. However, it is a challenging task to set up a systematic theory for
the FVM as satisfactory as that for the finite element method (FEM), especially for
high-order schemes.

The finite volume element method (FVEM), also known as the box method [1, 16,
36], the generalized finite difference method [23], and the vertex-centered FVM [6], is
one of the FVMs which seek the approximate solution in a certain finite element space.
With the help of the FE space, the discretization error of the FVEM can be analyzed
under the framework of a Petrov--Galerkin scheme [23, 42]. The linear FVEM is
closely related to the linear FEM, for which the error analysis has been well established
[1, 4, 11, 16, 23, 42]. However, the high-order FVEMs are significantly different from
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INTERIOR ESTIMATES OF FVEMs 2247

high-order FEMs and it is more challenging to obtain the error estimate. The early
efforts on high-order FVEMs can be traced back to [40, 24, 23, 5, 31, 42, 41]. Recently,
a class of high-order FVE schemes over quadrilateral meshes has been designed and
analyzed in [43]. In this class of FVEMs, the control volume was constructed using
Gauss points in each quadrilateral element and optimal error analysis in the global
energy norm was derived. Then in [25] and [17], the L2- and L\infty -norm errors are also
shown to have optimal convergence under appropriate assumptions on the solution
regularity and on the underlying meshes.

As a continuation of [43, 22, 15, 25, 17], in this paper we study interiorH1- and L2-
norm error estimates for high-order FVEMs. To illustrate our ideas and techniques,
we will consider the FVEMs for the following model problem:

 - \nabla \cdot (\nu \nabla u) = f in \Omega , u = 0 on \partial \Omega ,(1.1)

where \Omega \subset \BbbR 2 is a bounded polygonal domain, f a given real valued function, and
the coefficient matrix \nu \in (L\infty (\Omega ))2\times 2 is uniformly bounded and positive definite in
the sense that that there exists two constant \nu 0, \nu 1 > 0 such that for all \xi \in \BbbR 2, there
holds \nu 0\| \xi \| 2 \leq \xi T \nu \xi \leq \nu 1\| \xi \| 2.

Note that interior estimates of the FEMs for (1.1) have been investigated in a
series of papers (see, e.g., [28, 33, 35, 34]). For the FEMs, the interior error in an
interior region of the domain is bounded by the local approximation error and the FE
negative-norm error in the global domain. It is also known that the FE negative-norm
estimate has been thoroughly studied in the literature (see, e.g., [3]).

The main difficulty in the analysis of the FVEM interior error is that the FVEM
bilinear form is not symmetric and does not induce an inner product naturally. There-
fore, the duality argument used in the negative-norm and interior estimates of the
FEM does not apply to the FVEM. To overcome this difficulty, we shall estimate the
difference between the FVEM and FEM bilinear forms and the difference between the
corresponding right-hand sides. Starting with the ideas in [25, 15], we will develop
new analytical techniques to obtain negative-norm estimates and interior estimates
for the FVEM.

Note that the solution of (1.1) may be singular near the nonsmooth points on
the boundary, while the FVEM theory in the literature was established under the
assumption that solution u is sufficient regular. For instance, u \in H2 is the minimum
requirement for most of the exiting results. Thus, we first generalize the current
global FVEM error estimate to the case when u is singular. With the help of the
trace theorem [14], we obtain convergence results for the case u \in H3/2+\epsilon with \epsilon > 0
arbitrary small. Consequently, our negative-norm estimates for the FVEM will be
established under low-regularity assumptions.

For the interior error estimate of the FVEM, we follow two main steps. In the first
step, we estimate a discrete version of (1.1) given by the FVEM in an interior domain
G0. One important result is that the H1- and L2-norms of this discrete error are
bounded by its negative-norms. In the second step, we bound the H1- and L2-norms
of the FVEM error in an interior domain G0 by the approximate error in a slightly
larger domain G and the negative-norm of the error.

The findings in this paper are important for the theoretical development of the
FVEMs. First, all the current estimates for the FVEMs are based on the assumption
that the exact solution u at least belongs to H2. Here, we allow less-regular solutions
u \in H

3
2+\epsilon , \epsilon > 0 arbitrary small, to derive optimal H1- and L2-error estimates. This

makes the estimates of the FVEM available for singular problems. Second, to the

D
ow

nl
oa

de
d 

09
/1

3/
19

 to
 1

41
.2

17
.1

1.
14

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2248 LI GUO, HENGGUANG LI, AND QINGSONG ZOU

best of our knowledge, it is the first time that the negative-norm and interior error
estimates are obtained for high-order FVEMs.

The organization of this paper is as follows. In section 2, we generalize the global
H1- and L2-estimates to equations with low-regularity solutions. In section 3, we
present two negative-norm estimates for the FVEM, one under the high-regularity
assumption and the other under low-regularity assumption on the equation. The
interior estimates are included in section 4. We provide numerical test results in
section 5 to verify the theory. Concluding remarks are given in section 6.

Throughout the paper, we denote the standard Sobolev space on \Omega by Hm(\Omega ) if
m is an integer, and let L2 = H0. Let Hm

0 (\Omega ) be the completion of C\infty 
0 (\Omega ) in Hm(\Omega ).

For a noninteger \gamma \geq 0, let the space H\gamma and H\gamma 
0 be defined by interpolation. We use

the notation \| \cdot \| \alpha = \| \cdot \| \alpha ,\Omega for \alpha \in \BbbR if \Omega is the underlying domain. For two regions A
and B, A \subset B means that A is an interior proper subset of B (i.e., dist(\partial A, \partial B) > 0),
while A \subseteq B means that A is a subset of B (A can be equal to B). In addition,
``\alpha \lesssim \beta "" means that \alpha can be bounded by \beta multiplied by a constant which depends
on the underlying domain and the coefficient matrix \nu , but not on the functions or
the mesh size involved in the estimates. Meanwhile, ``\alpha \sim \beta "" means ``\alpha \lesssim \beta "" and
``\beta \lesssim \alpha "".

2. Global error estimates in \bfitH \bfone - and \bfitL \bftwo -spaces. In this section, we gen-
eralize the global H1- and L2-norm error estimates of high-order FVEMs in [25, 43]
(under high-regularity assumptions on the exact solution) to the case that the solution
has lower regularity.

2.1. High-order FVEMs. We recall a class of FVEM introduced and inves-
tigated in [43]. Let \scrT h = \{ \tau \} be a quasi-uniform quadrilateral partition of \Omega ,
where h = max\tau \in \scrT h

(diam\tau ) is the mesh parameter. Denote the set of all vertices
and all edges of \scrT h by \scrN h and \scrE h, respectively. Moreover, let \scrN \circ 

h = \scrN h \setminus \partial \Omega ,
\scrE \circ 
h = \scrE h \setminus \partial \Omega , \scrN b

h = \scrN h \cap \partial \Omega , and \scrE bh = \scrE h \cap \partial \Omega be the set of interior vertices,
internal edges, boundary vertices, and boundary edges, respectively. Throughout the
whole paper, we suppose that the quadrilateral mesh \scrT h is always of \scrO (h2)-distortion
from a parallel mesh in the sense that the distance between midpoints of two diagonals
of each \tau \in \scrT h is bounded by \scrO (h2) (cf. [25, 41]), and we suppose that the coefficient
matrix \nu is in (W 2k(\Omega ))2\times 2 piecewisely with respect to \scrT h.

Define the continuous finite element space of all bi-k polynomials associated with
\scrT h

Sh = Skh(\Omega ) = \{ v \in C(\Omega )
\bigm| \bigm| \^v\tau = v \circ F\tau \in \BbbQ k(\^\tau ) \forall \tau \in \scrT h, and v| \partial \Omega = 0\} ,

where \BbbQ k(\^\tau ) is the space of all bi-k polynomials and F\tau is the bilinear transformation
from the reference \^\tau = [ - 1, 1]2 to \tau . Then, the FEM for (1.1) is to find uh,FE \in Sh,
such that

a(uh,FE , \chi ) = (\nu \nabla uh,FE ,\nabla \chi ) = (f, \chi ) \forall \chi \in Sh,(2.1)

where (v, w) =
\int 
\Omega 
vwdxdy is the L2 inner product and a(\cdot , \cdot ) is the FEM bilinear

form.
A class of FVE schemes can be defined as follows. For each \tau \in \scrT h, let F\tau be

the affine transformation from the reference \^\tau = [ - 1, 1]2 to \tau . Let \{ gi| i = 1, . . . , k\} 
be the collection of the k Gauss points, i.e., zeros of Lk (the Legendre polynomial of
degree k), on the interval [ - 1, 1]; let \{ lj | j = 0, . . . , k\} be the collection of the k + 1
Lobatto points of degree k in the interval [ - 1, 1]. Namely, l0 =  - 1, lk = 1, and
\{ lm| m = 1, . . . , k  - 1\} are the k  - 1 zeros of L\prime 

k. We define the sets of the Gauss
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INTERIOR ESTIMATES OF FVEMs 2249

points and the Lobatto points in \tau by \scrG \tau =
\bigl\{ 
g\tau i,j = F\tau (gi, gj)

\bigm| \bigm| i, j \in \{ 1, . . . , k\} 
\bigr\} 
and

\scrL \tau =
\bigl\{ 
L\tau i,j = F\tau (li, lj)

\bigm| \bigm| i, j \in \{ 0, 1, . . . , k\} 
\bigr\} 
, respectively. Moreover, let \scrG = \cup \tau \in \scrT h

\scrG \tau 
and \scrL = \cup \tau \in \scrT h

\scrL \tau be the sets of all Gauss and Lobatto points in \scrT h, respectively. The
FVE scheme is designed by constructing the so-called dual mesh associated with the
Gauss points. We decompose each \tau \in \scrT h into (k+ 1)2 subquadrilaterals \tau P , P \in \scrG \tau ,
by connecting each Gauss point on one edge of \tau to the one at the same position on its
opposite edge. For any given Lobatto point P \in \scrL , a control volume VP is constructed
as the union of all subquadrilaterals containing the node P . The collection of all
control volumes \scrT \ast 

h = \{ VP | P \in \scrL \} constitutes the dual mesh of \Omega .
The FVE solution of (1.1) is a function uh \in Sh satisfying

(2.2)  - 
\int 
\partial VP

\nu \nabla uh \cdot nds =
\int 
VP

fdxdy

on each control volume VP , P \in \scrL \circ , where n is the unit outward normal on the
boundary curve \partial VP . Define the test space

\scrV h = \scrV h(\Omega ) = span\{ \psi VP

\bigm| \bigm| P \in \scrL \circ \} ,

where \scrL \circ = \scrL \setminus \partial \Omega is the set of all interior Lobatto points and \psi A is the characteristic
function of some set A \subset \Omega defined by \psi A(x) = 1 if x \in A and \psi A(x) = 0 if x \in \Omega \setminus A.
Then, (2.2) can be rewritten in the following Petrov--Galerkin form:

(2.3) ah(uh, wh) = (f, wh) \forall wh \in \scrV h,

where the FVEM bilinear form is defined for all v \in H1
0 (\Omega ), wh =

\sum 
P\in \scrL \circ wP\psi VP

\in \scrV h
as

(2.4) ah(v, wh) =  - 
\sum 
p\in \scrL \circ 

wP

\int 
\partial VP

\nu \nabla v \cdot nds.

Denoting by \scrE \prime 
h the set of interior edges of the dual partition \scrT \ast 

h , the bilinear form
ah(\cdot , \cdot ) can be rewritten as

(2.5) ah(v, wh) =
\sum 
E\in \scrE \prime 

h

[wh]E

\int 
E

\nu 
\partial v

\partial n
ds \forall v \in H1

0 (\Omega ), wh \in \scrV h,

where [wh]E = wh
\bigm| \bigm| 
V2

 - wh
\bigm| \bigm| 
V1

denotes the jump of the wh across the common edge
E = V1 \cap V2 of two volumes V1, V2 \in \scrT \ast 

h and n denotes the normal vector on E
pointing from V1 to V2.

2.2. \bfitH \bfone - and \bfitL \bftwo -norm error estimates. With the form (2.3), the convergence
properties of the FVEM can be established under the framework of a Petrov--Galerkin
method. Namely, the FVEM error can be estimated by studying the continuity and
the inf-sup condition of the FVEM bilinear form ah(\cdot , \cdot ) (cf. [42]).

Along this direction, it is shown in [43] that when \scrT h is sufficiently shape regular,
there holds the following inf-sup condition:

(2.6) inf
vh\in Sh

sup
wh\in \scrV h

ah(vh, wh)

| vh| 1| wh| 
\prime 
h

\gtrsim 1,
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2250 LI GUO, HENGGUANG LI, AND QINGSONG ZOU

where the seminorm in the test space \scrV h is defined by

| wh| 
\prime 

h =

\left(  \sum 
E\in \scrE \prime 

h

h - 1
E

\int 
E

[wh]
2
Eds

\right)  1
2

with hE as the diameter of an edge E. We mention that by defining a from-trial-to-
test mapping \Pi (cf. [43, 25] for a detailed definition), the inf-sup condition (2.6) is
equivalent to the coercivity

| ah(vh, v\ast h)| \gtrsim | vh| 21 \forall vh \in Sh,(2.7)

where we have used the notation v\ast h = \Pi vh \in \scrV h and the equivalence | vh| 1 \sim | v\ast h| 
\prime 

h.
For the continuity, it is shown in [42] that

| ah(v, wh)| \lesssim | v| h| wh| 
\prime 

h(2.8)

holds for all v \in H1
0 (\Omega ) \cap H2

h(\Omega ) and wh \in \scrV h, where the seminorm | \cdot | h in the
broken space H2

h(\Omega ) = \{ v \in H1(\Omega ) : v| \tau \in H2 for all \tau \in \scrT h\} is defined as | v| h =\bigl( \sum 
\tau \in \scrT h

| v| 21,\tau + h2\tau | v| 22,\tau 
\bigr) 1

2 with h\tau as the diameter of \tau . Here we would like to point
out that in fact, the inequality (2.8) holds for functions in a larger broken Sobolev
space

H\alpha 
h = H\alpha 

h (\Omega ) = \{ v \in H1(\Omega ) : v| \tau \in H\alpha \forall \tau \in \scrT h\} , \alpha >
3

2
,

with the associated seminorm | v| h,\alpha = (
\sum 
\tau \in \scrT h

(| v| 21,\tau +h
2(\alpha  - 1)
\tau | v| 2\alpha ,\tau ))

1
2 for all v \in H\alpha 

h .
Namely, we have the following lemma.

Lemma 2.1. The inequality (2.8) holds for all v \in H1
0 (\Omega ) \cap H\alpha 

h (\alpha > 3
2) and

wh \in \scrV h with | \cdot | h replaced by | \cdot | \alpha ,h.
Proof. By the Cauchy--Schwartz inequality, we have

| ah(v, wh)| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
E\in \scrE \prime 

h

[wh]E

\int 
E

\nu 
\partial v

\partial n
ds

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \lesssim | wh| \prime h

\left(  \sum 
E\in \scrE \prime 

h

hE

\int 
E

\biggl( 
\nu 
\partial v

\partial n

\biggr) 2

ds

\right)  1
2

.

By Theorem 1.4.2 in [14], for all \tau \in \scrT h, v \in H\beta (\tau ), \beta > 1
2 , there holds

| v| 0,\partial \tau \lesssim h
 - 1

2
\tau | v| 0,\tau + h

\beta  - 1
2

\tau | v| \beta ,\tau ,

where the hidden constant depends only on the shape of \tau . Choosing \beta = \alpha  - 1 and
combining with the fact that each entry of \nu is bounded by a constant, we have

| ah(v, wh)| \lesssim | wh| \prime h

\left(  \sum 
E\in \scrE \prime 

h

\sum 
E\cap \tau \not =\emptyset 

(| \nabla v| 20,\tau + h2\beta \tau | \nabla v| 2\beta ,\tau )

\right)  1
2

\lesssim | v| h,\alpha | wh| 
\prime 

h,(2.9)

which completes the proof.

With the inf-sup condition (2.6) and the generalized continuity (2.9), it is easy to
show the following H1 error estimates.
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Theorem 2.2. Let u \in H1+s(\Omega ) ( 12 < s \leq k) and uh \in Sh be the exact solution
and the FVEM solution of (1.1), respectively. Then

\| u - uh\| 1 \lesssim hs\| u\| s+1.(2.10)

Proof. Let uI \in Sh be the nodal interpolation of u. According to (2.9) and (2.7),
we have

\| uI  - uh\| 21 \lesssim ah(uI  - uh, u
\ast 
I  - u\ast h) = ah(uI  - u, u\ast I  - u\ast h) \lesssim | u - uI | h,1+s\| uI  - uh\| 1.

Then, we obtain by the triangle inequality,

\| u - uh\| 1 \leq \| u - uI\| 1 + \| uI  - uh\| 1 \lesssim \| u - uI\| 1 + | u - uI | h,s+1

\lesssim \| u - uI\| 1 +
\biggl( \sum 
\tau \in \scrT h

h2s| u - uI | 2s+1,\tau 

\biggr) 1/2

\lesssim hs\| u\| s+1,(2.11)

which completes the proof.

Remark 2.3. Theorem 2.2 generalizes the estimate in [25, 43], where (2.10) was
shown only for positive integer s. Here (2.10) holds for any real number 1/2 < s \leq k.

For the L2 error estimate, an optimal order estimate has been given in [25] under
the assumption that u \in Hk+1(\Omega ) and f \in Hk(\Omega ). In this paper, we extend this result
to the more general case in which u \in H1+s(\Omega ) and f \in Hs(\Omega ) (1/2 < s \leq k). To this
end, we introduce an index t that is determined by the geometry of the domain \Omega .
For any sufficiently smooth function g \in C\infty (\Omega ), let \psi be the solution of the problem

 - \nabla \cdot (\nu \nabla \psi ) = g in \Omega , \psi = 0 on \partial \Omega .(2.12)

The index t > 0 is such that

\| \psi \| t+1 \lesssim \| g\| t - 1(2.13)

holds for all g \in C\infty (\Omega ). In fact, let \theta be the largest interior angle of \Omega . Then, for all
0 < t < \pi /\theta , the inequality (2.13) holds. We point out that for (1.1), the regularity
index s of the solution u depends on both the right-hand function f and the geometry
of \Omega . When the boundary of polygonal domain has large interior corners, even when
f is smooth, the full regularity property \| u\| k+1 \lesssim \| f\| k - 1 may not be valid. We also
mention that the regularity of u is a local property. In an interior region, the index s
only depends on f , in other words, when f is sufficiently smooth, the solution u can
display a full regularity in an interior region of \Omega ; see section 4 for details.

Following the routines in [25], we obtain the global L2 error estimate.

Theorem 2.4. Let u \in H1+s(\Omega ) with 1
2 < s \leq k and uh \in Sh be the exact

solution and the FVEM solution (1.1), respectively. If f \in Hs(\Omega ), then

\| u - uh\| 0 \lesssim hs+min(1,t)(\| u\| s+1 + \| f\| s).(2.14)

Remark 2.5. Comparing to the L2 estimates for the FEM, we observe that the L2

error estimate for the FVEM has an additional regularity requirement for f . For the
special case k = s = 1, a counterexample has been designed in [18] to illustrate that
u \in H1+s is not sufficient to obtain the optimal order L2 estimates for the FVEM
and the additional term \| f\| s on the right-hand side of (2.14) is necessary.

Remark 2.6. The L2 estimate in [25] is a special case of Theorem 2.4 where s = k
and t = 1.
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3. Negative-norm error estimates. We begin with a definition of negative
norms. For any subset A \subseteq \Omega and any integer m \geq 0, the negative norm is defined as

\| v\|  - m,A = sup
0\not =\varphi \in C\infty 

0 (A)

(v, \varphi )A
\| \varphi \| m,A

,

where (v, \varphi )A =
\int 
A
v\varphi dxdy.

Lemma 3.1. For all v \in Hk+l+1
h , 0 \leq l \leq k and \xi h \in Skh(\Omega ), we have

| a(v, \xi h) - ah(v, \xi 
\ast 
h)| \lesssim hl+k\| v\| k+l+1,h\| \xi h\| k+1,h.(3.1)

Proof. Following Theorem 4.4 in [25], we rewrite the FVE bilinear form ah(\cdot ,\Pi \cdot )
as a Gauss quadrature of the FE bilinear form a(\cdot , \cdot ) and then

a(\xi h, v) - ah(\xi h, v
\ast ) =

\sum 
Q\in \scrT h

(aQ(\xi h, v) - ah,Q(\xi h, v
\ast ))(3.2)

with

ah,Q(\xi h, v
\ast ) - aQ(\xi h, v) =

\int 1

 - 1

E1(\Theta 1, \^y)d\^y +

k\sum 
i=1

AiE2(\Theta 1, gi)

+

\int 1

 - 1

E2(\Theta 2, \^x)d\^x+

k\sum 
j=1

AjE1(\Theta 2, gj);

here Ai, gi are the weights and abscissae of the k-point-Gauss-quadrature for comput-

ing the integral
\int 1

 - 1
z(x)dx,

E1(F, \^y) =

\int 1

 - 1

F (\^x, \^y)d\^x - 
k\sum 
i=1

AiF (gi, \^y), E2(F, \^y) =

\int 1

 - 1

F (\^x, \^y)d\^y  - 
k\sum 
j=1

AjF (\^x, gj),

and \Theta i = \^\Theta i,Q = \partial 2 \^\xi h
\partial \^x\partial \^y

\^Vi, i = 1, 2 with

\^V1(\^x, \^y) = \^V1( - 1, \^y) +

\int \^x

 - 1

\^\nu 

\biggl( 
b12

\partial \^v

\partial \^x
+ b11

\partial \^v

\partial \^y

\biggr) 
(\^x

\prime 
, \^y)d\^x

\prime 
,

\^V2(\^x, \^y) = \^V2(\^x, - 1) +

\int \^y

 - 1

\^\nu 

\biggl( 
b22

\partial \^v

\partial \^x
+ b21

\partial \^v

\partial \^y

\biggr) 
(\^x, \^y

\prime 
)d\^y

\prime 
.

The matrix b = (( - 1)i+jbi,j)2\times 2 and (bi,j)2\times 2 = J - 1
Q (DFQ)(DFQ)

T satisfies

| D\bfi blm| \lesssim h| \bfi | , 1 \leq l,m \leq 2,(3.3)

where i = i1, i2, i1, i2 \geq 0 and | i| = i1 + i2 and DFQ is the Jacobi matrix of FQ and
JQ is the determinant of DFQ.

Next we estimate E1(\Theta 1, \^y), E2(\Theta 2, \^x), E2(\Theta 1, gi), and E1(\Theta 2, gj). For any given
\^y \in [ - 1, 1], E1(\Theta 1, \^y) is the difference between an exact integral and a Gauss quad-
rature of order k, and then we have

| E1(\Theta 1, \^y)| \lesssim 
\bigm\| \bigm\| \bigm\| \bigm\| \partial k+l\partial \^xk+l

\Theta 1(\cdot , \^y)
\bigm\| \bigm\| \bigm\| \bigm\| 

\^Q

.
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By the Leibnitz formula, it is easy to obtain

\partial k+l

\partial \^xk+l
\Theta 1 =

\partial k+l

\partial \^xk+l

\Biggl( 
\partial 2 \^\xi h
\partial \^x\partial \^y

\^V1

\Biggr) 
=

k - 1\sum 
j=0

Cjk+l
\partial 

\partial \^y

\Biggl( 
\partial j+1 \^\xi h
\partial \^xj+1

\Biggr) 
\partial k+l - j

\partial \^xk+l - j
\^V1.(3.4)

Using the Leibnitz formula again, we have\bigm| \bigm| \bigm| \bigm| \partial k+l - j\partial \^xk+l - j
\^V1

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \partial k+l - j - 1

\partial \^xk+l - j - 1

\biggl( 
\^\nu 
\partial \^v

\partial \^x
b12 + \^\nu 

\partial \^v

\partial \^y
b11

\biggr) \bigm| \bigm| \bigm| \bigm| 
\lesssim 
k+l - j - 1\sum 
m=0

\bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggl( 
\partial m(\^\nu \partial \^v\partial x )

\partial \^xm
\partial k+l - j - 1 - mb12
\partial \^xk+l - j - 1 - m +

\partial m(\^\nu \partial \^v\partial y )

\partial \^xm
\partial k+l - j - 1 - mb11
\partial \^xk+l - j - 1 - m

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
\lesssim 
k+l - j - 1\sum 
m=0

hk+l - j - 1 - m

\Biggl( \bigm| \bigm| \bigm| \bigm| \^\nu \partial \^v\partial \^x
\bigm| \bigm| \bigm| \bigm| 
m, \^Q

+

\bigm| \bigm| \bigm| \bigm| \^\nu \partial \^v\partial \^y
\bigm| \bigm| \bigm| \bigm| 
m, \^Q

\Biggr) 
\lesssim hk+l - j - 1\| v\| k+l,Q,(3.5)

where in the last inequality, we have used the chain rule, \| \nu \| 2k,\infty \lesssim 1, and the fact
that

| \^\chi | l, \^Q \lesssim hl - 1\| \chi \| l,Q \forall \chi \in H l(Q), l \geq 1.

Consequently,

| E1(\Theta 1, \^y)| \lesssim 
k - 1\sum 
j=0

hj+1\| \xi h\| j+2,Q

k+l - j - 1\sum 
m=0

hk+l - j - 1\| v\| m+1,Q

\lesssim 
k - 1\sum 
j=0

k+l - j - 1\sum 
m=0

hk+l\| v\| m+1,Q\| \xi h\| j+2,Q

\lesssim hk+l\| \xi h\| k+1,Q\| v\| k+l,Q.

Since here \^x \in (0, 1) is arbitrary, actually we obtain

\| E1(\Theta 1, \cdot )\| \infty \lesssim hk+l\| \xi h\| k+1,Q\| v\| k+l,Q.(3.6)

Similarly, we have

\| E1(\Theta 2, \cdot )\| \infty \lesssim hk+l\| \xi h\| k+1,Q\| v\| k+l+1,Q.(3.7)

For E2, we also have \| E2(\Theta 1, \cdot )\| \infty , \| E2(\Theta 2, \cdot )\| \infty \lesssim hk+l\| \xi h\| k+1,Q\| v\| k+l+1,Q. Plug-
ging the estimates (3.6) and (3.7) into (3.2), we obtain (3.1). The proof is com-
pleted.

With this estimate for the difference between the FVEM and FEM bilinear forms,
we first derive a negative-norm estimate under a high regularity assumption on the
solution.

Theorem 3.2. Let u \in Hk+l+1 (0 \leq l \leq k) and uh be the exact solution and the
FVEM solution, respectively. Then for any integer 0 \leq p \leq k  - 1, we have

\| u - uh\|  - p \lesssim hl+min(t,p+1)\| u\| k+l+1.(3.8)

Proof. For simplicity, we denote e = u - uh. By (2.13), we obtain

\| e\|  - p = sup
g\in C\infty 

0 (\Omega )

(e, g)

\| g\| p
\lesssim sup
\psi \in C\infty 

a(e, \psi )

\| \psi \| 1+min(t,p+1)
.(3.9)
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Letting \psi I \in Skh(\Omega ) be the nodal interpolation of \psi , one obtains

a(e, \psi ) = a(e, \psi  - \psi I) + a(e, \psi I).(3.10)

For the first term of the right-hand side (3.10), we have

a(e, \psi  - \psi I) \lesssim \| e\| 1\| \psi  - \psi I\| 1 \lesssim hk+min(t,p+1)\| u\| k+1\| \psi \| 1+min(t,p+1).(3.11)

For the second right term of (3.10), we use the fact that

ah(e, \psi 
\ast 
I ) = ah(u, \psi 

\ast 
I ) - ah(uh, \psi 

\ast 
I ) = 0,

the Theorem 2.2, (3.1), and the inverse inequality (see [28])

\| vh\| q \lesssim hp - q\| vh\| p \forall vh \in Skh(\Omega ), p \leq q \leq k,

to derive that

| a(e, \psi I)| = | a(e, \psi I) - ah(e, \psi 
\ast 
I )| \lesssim hl+k\| u - uh\| k+l+1,h\| \psi I\| k+1,h

\lesssim hl+min(t,p+1)\| u\| k+l+1\| \psi \| 1+min(t,p+1).(3.12)

Plugging (3.11) and (3.12) into (3.10) and (3.9), we obtain (3.8).

Note that for the FEM, the optimal negative-norm estimate is \| e\|  - (k - 1) \lesssim 
hk+min(k,t)\| u\| k+1, ([3]). Here for the FVEM, we require the regularity u \in H2k+1 for
the optimal order k+min(k, t). Since the elliptic problems considered here may have
singular solutions, we next present a result in which u has singularities.

Theorem 3.3. Let u \in Hs+1 with 1
2 < s \leq 1 and uh be the exact solution

of (1.1) and the FVEM approximation solution, respectively. Then for any integer
0 \leq p \leq k  - 1, if f \in Hmin(t,p+1), we have

\| u - uh\|  - p \lesssim hs+min(t,p+1)(\| u\| 1+s + \| f\| min(t,p+1)).(3.13)

Proof. Following the estimates in Theorem 3.2, we only need to bound the two
terms on the right-hand side of (3.10). For the first term, because of (2.10), we have

| a(e, \psi  - \psi I)| \lesssim | e| 1| \psi  - \psi I | 1 \lesssim hs+min(t,p+1)\| u\| 1+s\| \psi \| 1+min(t,p+1).(3.14)

For the second term, we have that

a(e, \psi I) = a(u - uh, \psi I) - ah(u - uh, \psi 
\ast 
I )

= ah(uh, \psi 
\ast 
I ) - a(uh, \psi I) + (f, \psi I  - \psi \ast 

I ).(3.15)

By (3.1) and the inverse inequality, one has

| ah(uh, \psi \ast 
I ) - a(uh, \psi I)| \lesssim hs+min(t,p+1)\| u\| 1+s\| \psi \| 1+min(t,p+1).(3.16)

Letting fI \in Sk - 1
h (\Omega ) be the interpolation of f , one has (cf. Theorem 4.7 in [25])

| (f, \psi I  - \psi \ast 
I )| 

(3.17)

= | (f  - fI , \psi I  - \psi \ast 
I )| \lesssim \| f  - fI\| 0\| \psi I  - \psi \ast 

I\| 0
\lesssim h| \psi I | 1hmin(t,p+1)\| f\| min(t,p+1) \lesssim h1+min(t,p+1)\| f\| min(t,p+1)\| \psi \| 1+min(t,p+1).

Combining (3.14)--(3.17), we derive the desired inequality (3.13).

Remark 3.4. In Theorem 3.3, we have an additional requirement f \in Hmin(t,p+1).
Since the regularity of u depends on both f and the geometry of \Omega , u might have
singularity even if f \in C\infty . The requirement f \in Hmin(t,p+1) does not contradict the
low regularity assumption u \in H1+s.
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4. Interior error estimates. In this section, we investigate the interior error
estimates in the H1 and L2 spaces for the FVE scheme (2.3). We begin with some
necessary notation. For an interior domain A \subset \Omega , let Sh(A) and \scrV h(A) be the
restriction on A of Sh(\Omega ) and \scrV h(\Omega ), respectively. Moreover, let \r Sh(A) = \{ \chi \in 
Sh(A) : supp \chi \subseteq A\} , and \r \scrV h(A) = \{ \chi \in \scrV h(A) : supp \chi \subseteq A\} . It is clear that
\r Sh(A) \subset Sh and \r \scrV h(A) \subset \scrV h for all A \subset \Omega .

Suppose now D0 = B(x0, r0) \subset D = B(x0, r) \subset \Omega are two fixed concentric discs
with radii r0 and r, respectively. We also assume that the mesh size h is sufficiently
small, such that for any concentric discs between D0 and D, the distance between
their boundaries for any two adjacent discs is larger than k0h, where k0 is a positive
constant. Let \omega \in C\infty 

0 (D0), and then for all \chi \in Sh(D), there exists \zeta \in \r Sh(D), such
that the following superapproximation holds for 0 \leq \eta \leq 1

\| \omega \chi  - \zeta \| \eta ,D \lesssim h2 - \eta \| \chi \| 1,D.(4.1)

The inequality (4.1) can be derived by using Theorem 4.6.11 in [3] for the case that
\eta is an integer. And there is an example to verify this inequality in [28]. Note that
the hidden constant in (4.1) may depend on the center x0 and the radii r0 and r.

By the proof of Lemma 3.1, we find that the inequality (3.1) is also valid on an
interior region of the domain \Omega . In particular, letting D0 \subset D \subset \Omega be two arbitrary
but fixed concentric discs with dist(\partial D0, \partial D) \gtrsim h, we have

| a(\xi h, vh)D0  - ah(\xi h, v
\ast 
h)D0 | \lesssim h2k\| \xi h\| k+1,h,D\| vh\| k+1,h,D \lesssim hk\| \xi h\| 1,h,D\| vh\| k+1,h,D,

(4.2)

where a(\cdot , \cdot )D0 , ah(\cdot , \cdot )D0 and \| \cdot \| k+1,h,D are restrictions of a(\cdot , \cdot ), ah(\cdot , \cdot ) on the subset
D0 and \| \cdot \| k+1,h on D.

Next, we introduce the local FVE projection Rh = RAh which maps any function
v \in H1

0 (A0) and v = 0 in A \setminus A0 (where A0 \subset A and dist(\partial A0, \partial A) \geq k0h) to
Rhv \in \r Sh(A) such that

ah(Rhv, wh) = ah(v, wh) \forall wh \in \r \scrV h(A).(4.3)

Note that when A = D is a disc in the interior of \Omega , the boundary of D is sufficiently
smooth, and the full regularity property \| \psi \| k+2,D \lesssim \| g\| k,D holds for all \psi \in H1

0 (D)
satisfying the equation

 - \nabla \cdot (\nu \nabla \psi ) = g in D, \psi = 0 on \partial D.(4.4)

Therefore, by Theorem 2.2, for all v \in H1
0 (D0)

\bigcap 
H1+s(D) and v = 0 in D \setminus D0 with

1
2 < s \leq k, we have

\| v  - Rhv\| 1,D \lesssim hs\| v\| 1+s,D.(4.5)

Furthermore, since \|  - \Delta v\| s,D \leq \| v\| s+2,D, by Theorem 2.4, for v \in H1
0 (D0)

\bigcap 
H2+s(D)

and v = 0 in D \setminus D0 with 1
2 < s \leq k, we have

\| v  - Rhv\| 0,D \lesssim hs+1\| v\| s+2,D.(4.6)

4.1. Estimates of the discrete FVE interior error. The aim of this paper
is to estimate the FVE error e = u  - uh on an interior domain G0 \subset G \subset \Omega with
d0 = dist(\partial G0, \partial G) \gtrsim h. Note that \=G0 can be covered by a finite number of discs
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D0(xi, d0/2) with center xi and radius d0/2, where \=G0 is the closure of G0. Therefore,
it is sufficient to derive interior estimates on each disc D0(xi, d0/2) in order to obtain
the interior estimates on the domain G0. Thus, without loss of generality, we only
need to consider the local estimate on an interior disc D0 \subset D \subset \Omega .

Noticing that e satisfies the error equation

ah(e, v
\ast 
h) = 0 \forall vh \in \r Sh(D),(4.7)

we let Zh \in Sh(D) be a function that satisfies

ah(Zh, v
\ast 
h) = 0 \forall vh \in \r Sh(D).(4.8)

In fact, Zh can be regarded as the discrete version of e in Sh(D). The estimates of
Zh will play an important role in the local estimates of the FVE error e. Thus, in
this subsection, we analyze Zh in different norms. We begin with a negative-norm
estimate for Zh. The main idea is to combine the techniques established in [28] for
the negative-norm estimates of the FEM and the estimates of the difference between
the FEM and FVEM bilinear forms established in section 3.

Lemma 4.1. Let D0 = B(x0, r0) \subset D = B(x0, r) \subset \Omega be two fixed concentric
discs with r0, r > 0 independent of h. Then for all integers 0 \leq p \leq k  - 1 and for h
sufficiently small, we have

\| Zh\|  - p,D0 \lesssim h1+p\| Zh\| 1,D + \| Zh\|  - p - 1,D.(4.9)

Proof. Let D\prime = B(x0,
2r0+r

3 ), D\prime \prime = B(x0,
r0+2r

3 ), and \omega \in C\infty 
0 (D\prime ) with \omega \equiv 1

on D0. Then for p \geq 0, we have

\| Zh\|  - p,D0
\lesssim \| \omega Zh\|  - p,D\prime = sup

g\in C\infty 
0 (D\prime )

(\omega Zh, g)D\prime 

\| g\| p,D\prime 
\lesssim sup
\psi \in C\infty 

0 (D\prime )

a(\omega Zh, \psi )D\prime 

\| \psi \| p+2,D\prime 
,(4.10)

where \psi is the solution of (4.4). By (4.8), we have that for all \chi \in \r Sh(D
\prime \prime ),

a(\omega Zh, \psi )D\prime = a(Zh, \omega \psi ) + (Zh,\nabla \cdot (\nu \psi \nabla \omega )) + (Zh, \nu \nabla \omega \cdot \nabla \psi )
= a(Zh, \omega \psi  - \chi ) + (Zh,\nabla \cdot (\nu \psi \nabla \omega )) + (Zh, \nu \nabla \omega \cdot \nabla \psi ) + a(Zh, \chi )

= a(Zh, \omega \psi  - \chi ) + (Zh,\nabla \cdot (\nu \psi \nabla \omega )) + (Zh, \nu \nabla \omega \cdot \nabla \psi )
+ a(Zh, \chi ) - ah(Zh, \chi 

\ast ).(4.11)

Choosing \chi as the nodal interpolation of \omega \psi in \r Sh(D
\prime \prime ), we have

| a(\omega Zh, \psi )| D\prime \lesssim \| Zh\| 1,D\prime \| \omega \psi  - \chi \| 1,D\prime \prime \lesssim h1+p\| Zh\| 1,D\| \psi \| p+2,D.(4.12)

Moreover, since \omega \in C\infty 
0 (D\prime ) and \nu \in C\infty (D\prime ), we have

| (Zh,\nabla \cdot (\nu \psi \nabla \omega )) + (Zh, \nu \nabla \omega \cdot \nabla \psi )| \lesssim \| Zh\|  - p - 1,D\| \psi \| p+2,D.(4.13)

On the other hand, by (4.2) and inverse inequality we have

| a(Zh, \chi ) - ah(Zh, \chi 
\ast )| \lesssim h1+p\| Zh\| 1,D\| \chi \| p+2,h,D

\lesssim h1+p\| Zh\| 1,D(\| \chi  - \omega \psi \| p+2,h,D + \| \omega \psi \| p+2,h,D)

\lesssim h1+p\| Zh\| 1,D\| \psi \| p+2,D.(4.14)

Plugging (4.12)--(4.14) into (4.11), one obtains

a(\omega Zh, \psi )D\prime \lesssim (h1+p\| Zh\| 1,D + \| Zh\|  - p - 1,D)\| \psi \| p+2,D.(4.15)

Combining (4.10) and (4.15), we obtain the estimate (4.9).
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Lemma 4.2. Given the conditions in Lemma 4.1, we obtain

\| Zh\| 0,D0 \lesssim h\| Zh\| 1,D + \| Zh\|  - p - 1,D.(4.16)

Proof. Let D0 \subset D1 \subset \cdot \cdot \cdot \subset Dp+1 = D be concentric discs with increasing radii.
Setting p = 0 in (4.9), we have

\| Zh\| 0,D0
\lesssim h\| Zh\| 1,D1

+ \| Zh\|  - 1,D1
.(4.17)

Then we reapply (4.9) to estimate \| Zh\|  - 1,D1
. By h \leq 1, we have

\| Zh\| 0,D0 \lesssim h\| Zh\| 1,D2 + \| Zh\|  - 2,D2 .(4.18)

Continuing this process until to Dp+1, we obtain the desired result (4.16).

Lemma 4.3. Given the conditions in Lemma 4.1, we have

\| Zh\| 1,D0
\lesssim h\| Zh\| 1,D + \| Zh\|  - p - 1,D.(4.19)

Proof. Let D0 \subset D\prime \subset D
\prime \prime \subset D be fixed concentric discs with increasing radii

and \omega \in C\infty 
0 (D\prime ) with \omega \equiv 1 on D0. Then, we have

\| Zh\| 1,D0 \leq \| \omega Zh\| 1,D\prime \leq \| \omega Zh  - Rh(\omega Zh)\| 1,D\prime \prime + \| Rh(\omega Zh)\| 1,D\prime \prime ,(4.20)

where Rh = RD
\prime \prime 

h .
Next, we estimate the two terms on the right-hand side of (4.20). For the first

term, we use (2.11), (4.1), and the inverse inequality to obtain

\| \omega Zh  - Rh(\omega Zh)\| 1,D\prime \prime \lesssim inf
\zeta \in \r Sh(D\prime \prime )

| \omega Zh  - \zeta | h, 32+\varepsilon 

= inf
\zeta \in \r Sh(D\prime \prime )

\Biggl( 
| \omega Zh  - \zeta | 1,D\prime \prime +

\sum 
\tau \in \scrT h

h1/2+\varepsilon \tau | \omega Zh  - \zeta | 3
2+\varepsilon ,\tau 

\Biggr) 
\lesssim h\| Zh\| 1,D,(4.21)

where \varepsilon is an arbitrary small positive constant. For the second term, letting \phi =
Rh(\omega Zh)

\| Rh(\omega Zh)\| 1,D\prime \prime 
, then \| \phi \| 1,D\prime \prime = 1, \phi \in \r Sh(D

\prime \prime ) and we have

\| Rh(\omega Zh)\| 1,D\prime \prime \lesssim ah(\omega Zh, \phi 
\ast )D\prime \prime .(4.22)

By the definition of bilinear form ah and (4.8), we have

ah(\omega Zh, \phi 
\ast )D\prime \prime =

\sum 
E\in (\scrE \prime 

h\cap D\prime \prime )

[\phi \ast ]E

\int 
E

\nu 
\partial (\omega Zh)

\partial n
ds

=
\sum 

E\in (\scrE \prime 
h\cap D\prime \prime )

\int 
E

\nu 
\partial Zh
\partial n

[\omega \phi \ast  - \chi \ast ]ds+
\sum 

E\in (\scrE \prime 
h\cap D\prime \prime )

[\phi \ast ]E

\int 
E

Zh\nu 
\partial \omega 

\partial n
ds

\triangleq K1 +K2,(4.23)

D
ow

nl
oa

de
d 

09
/1

3/
19

 to
 1

41
.2

17
.1

1.
14

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2258 LI GUO, HENGGUANG LI, AND QINGSONG ZOU

where \chi \in \r Sh(D
\prime \prime ) is arbitrary. By the Cauchy--Schwartz inequality, the trace in-

equality, and the inverse inequality and the boundedness of \nu , we have

| K2| \lesssim | \phi \ast | \prime h,D\prime \prime 

\left(  \sum 
E\in (\scrE \prime 

h\cap D\prime \prime )

hE

\int 
E

\biggl( 
Zh\nu 

\partial \omega 

\partial n

\biggr) 2

ds

\right)  1
2

\lesssim | \phi \ast | \prime h,D\prime \prime 

\left(  \sum 
E\in (\scrE \prime 

h\cap D\prime \prime )

\sum 
E\cap \tau \not =\emptyset 

(| Zh\nabla \omega | 20,\tau + h2Q| Zh\nabla \omega | 21,\tau )

\right)  1
2

\lesssim | \phi \ast | \prime h,D\prime \prime 

\left(  \sum 
\tau \in (\scrT h\cap D\prime \prime )

| Zh| 20,\tau 

\right)  1
2

\lesssim | \phi | 1,D\prime \prime \| Zh\| 0,D\prime \prime .(4.24)

To estimate K1, we write

K1 = K1,1 +K1,2 +K1,3(4.25)

with

K1,1 =
\sum 

E\in (\scrE \prime 
h\cap D\prime \prime )

\int 
E

\nu 
\partial Zh
\partial n

[\omega \phi \ast  - \omega \ast \phi \ast ]ds,

K1,2 =
\sum 

E\in (\scrE \prime 
h\cap D\prime \prime )

\int 
E

\nu 
\partial Zh
\partial n

[\omega \ast \phi \ast  - (Ih\omega )
\ast \phi \ast ]ds,

K1,3 =
\sum 

E\in (\scrE \prime 
h\cap D\prime \prime )

\int 
E

\nu 
\partial Zh
\partial n

[(Ih\omega )
\ast \phi \ast  - \chi \ast ]ds.

By the continuity of ah and the boundedness of \nu , we have

| K1,1| \lesssim h| \omega | 1,\infty 
\sum 

E\in (\scrE \prime 
h\cap D\prime \prime )

\int 
E

\bigm| \bigm| \bigm| \bigm| \partial Zh\partial n
[\phi \ast ]

\bigm| \bigm| \bigm| \bigm| ds \lesssim h| Zh| 1,D\prime \prime | \phi | 1,D\prime \prime (4.26)

and

| K1,2| \lesssim 
\sum 

E\in (\scrE \prime 
h\cap D\prime \prime )

\bigm| \bigm| \bigm| \bigm| \int 
E

\partial Zh
\partial n

[(\omega  - Ih\omega )
\ast ][\phi \ast ]ds

\bigm| \bigm| \bigm| \bigm| \lesssim h| Zh| 1,D\prime \prime | \phi | 1,D\prime \prime .(4.27)

Moreover, following the proof of (4.24), we choose \chi to satisfy (4.1) for \phi . Then

| K1,3| \lesssim | Zh| 1,D\prime \prime | (Ih\omega )\phi  - \chi | 1,D\prime \prime \lesssim h| Zh| 1,D\prime \prime | \phi | 1,D\prime \prime .(4.28)

Plugging (4.24)--(4.28) into (4.22) and combining with (4.21), it follows that

\| Zh\| 1,D0 \lesssim h\| Zh\| 1,D\prime \prime + \| Zh\| 0,D\prime \prime .(4.29)

For the term \| Zh\| 0,D\prime \prime in (4.29), we can further apply the estimate (4.16) in Lemma
4.2 and D0 replaced by D\prime \prime . Then the estimate (4.19) follows from (4.20), (4.21), and
(4.29).

Using Lemma 4.3, we next show that the H1 norm of Zh in an interior domain
can be bounded by its negative norm in a slightly larger interior region.
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Lemma 4.4. Given the conditions in Lemma 4.1, we have

\| Zh\| 1,D0 \lesssim \| Zh\|  - p - 1,D.(4.30)

Proof. Let D0 \subset D1 \subset \cdot \cdot \cdot \subset Dp+3 = D be concentric discs with increasing radii.
Applying Lemma 4.3 with D0 and D replaced by Dj , Dj+1, 0 \leq j \leq p+1, we obtain

\| Zh\| 1,Dj
\lesssim h\| Zh\| 1,Dj+1

+ \| Zh\|  - p - 1,Dj+1
.(4.31)

Stating with j = 0 and iterating p+ 2 times, one gets

\| Zh\| 1,D0
\lesssim hp+2\| Zh\| 1,Dr+2

+ \| Zh\|  - p - 1,Dp+2
.(4.32)

From the inverse inequality, we have

hp+2\| Zh\| 1,Dp+2
\lesssim \| Zh\|  - p - 1,D.(4.33)

The inequality (4.30) then follows from (4.32) and (4.33).

4.2. Interior estimates of the FVE error. In this section, we derive the
interior H1 and L2 norm error estimates for the FVEM (2.3).

Theorem 4.5. Let G0 \subset G \subset \Omega be fixed interior subregions of \Omega with h \lesssim d :=
dist(\partial G0, \partial G) and d be independent of h. Suppose u \in H1+s(G) ( 12 < s \leq k) and let
the integer 0 \leq p \leq k  - 1. Then we have

\| u - uh\| 1,G0
\lesssim hs\| u\| s+1,G + \| u - uh\|  - p,G;(4.34)

furthermore, if u \in Hs+2(G) ( 12 < s \leq k), we have

\| u - uh\| 0,G0
\lesssim hs+1\| u\| s+2,G + \| u - uh\|  - p,G.(4.35)

Proof. Using a covering argument, it suffices to show (4.34) and (4.35) for the
case that G0 and G are two concentric discs D0 \subset D \subset \Omega with increasing radii. In
what follows, we let D0 \subset D\prime 

0 \subset D\prime \subset D\prime \prime \subset D be five fixed concentric discs with
increasing radii, and the cut-off function \omega \in C\infty 

0 (D\prime ) satisfying \omega \equiv 1 on D\prime 
0.

We first show (4.34). Letting e = u - uh, for Rh = RD
\prime \prime 

h we have

\| e\| 1,D0
\leq \| \omega u - Rh(\omega u)\| 1,D\prime \prime + \| Rh(\omega u) - uh\| 1,D0

.(4.36)

We observe that for any v \in \r Sh(D
\prime 
0),

ah(Rh(\omega u) - uh, v
\ast )D\prime 

0
= ah(\omega u - uh, v

\ast )D\prime 
0
= ah(u - uh, v

\ast )D\prime 
0
= 0,

which implies (4.8) with Zh = Rh(\omega u) - uh and D replaced by D\prime 
0. Thus, by Lemma

4.4, we have

\| Rh(\omega u) - uh\| 1,D0
(4.37)

\lesssim \| Rh(\omega u) - uh\|  - p,D\prime 
0
\lesssim \| u - uh\|  - p,D\prime 

0
+ \| \omega u - Rh(\omega u)\|  - p,D\prime 

0

\lesssim \| u - uh\|  - p,D + \| \omega u - Rh(\omega u)\| 1,D\prime \prime \lesssim \| u - uh\|  - p,D + hs\| u\| s+1,D,

where we have used (4.5) in the last inequality. On the other hand, by (4.5), we also
have

\| \omega u - Rh(\omega u)\| 1,D\prime \prime \lesssim hs\| u\| s+1,D.(4.38)
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Then by (4.36), (4.37), and (4.38), we obtain

\| e\| 1,D0
\lesssim hs\| u\| s+1,D + \| e\|  - p,D.(4.39)

Thus, by the covering argument, the estimate (4.34) is obtained.
Next we show (4.35). Similar to (4.36), we have

\| e\| 0,D0 \leq \| \omega u - Rh(\omega u)\| 0,D\prime \prime + \| Rh(\omega u) - uh\| 0,D0 .(4.40)

By Lemma 4.2 with Zh = Rh(\omega u) - uh, we have

\| Rh(\omega u) - uh\| 0,D0
\lesssim h\| Rh(\omega u) - uh\| 1,D\prime 

0
+ \| Rh(\omega u) - uh\|  - p,D\prime 

0
.(4.41)

Utilizing (4.37) with D0 replaced by D\prime 
0, one gets

\| Rh(\omega u) - uh\| 1,D\prime 
0
\lesssim \| e\|  - p,D + hs\| u\| s+1,D.(4.42)

Moreover, by (4.6), we have

\| Rh(\omega u) - uh\|  - p,D\prime 
0
\lesssim \| \omega u - Rh(\omega u)\|  - p,D\prime 

0
+ \| u - uh\|  - p,D\prime 

0

\lesssim \| \omega u - Rh(\omega u)\| 0,D\prime \prime + \| e\|  - p,D \lesssim hs+1\| u\| s+2,D + \| e\|  - p,D.(4.43)

Plugging (4.43) and (4.42) into (4.41), we obtain

\| Rh(\omega u) - uh\| 0,D0
\lesssim hs+1\| u\| s+2,D + \| e\|  - p,D.(4.44)

For the first term on the right-hand side of (4.40), using (4.6), we obtain

\| \omega u - Rh(\omega u)\| 0,D\prime \prime \lesssim hs+1\| u\| s+1,D.(4.45)

Then, plugging (4.42) and (4.44) into (4.40), we have

\| e\| 0,D0
\lesssim hs+1\| u\| s+2,D + \| e\|  - p,D.(4.46)

The estimate (4.35) follows by the covering argument.

Remark 4.6. The hidden constant in Theorem 4.5 depends on the domains G0

and G that are arbitrary fixed. In practical computations, it is also important to
quantify such dependence when dist(\partial G0, \partial G) is close to h. This shall give rise to
local estimates for the FV approximation in interior regions near the singular point.
Note that for a disc A := B(x0, d) \subset \Omega , the dilation \^x = (x  - x0)/d translates A
into the unit disc \^A = B(0, 1) and Sh(A) into a new finite dimensional space Sh/d( \^A).
Using the scaling argument, the inequalities (4.34) and (4.35) are still valid for A with
h replaced by h/d, where the hidden constant is independent of d.

Corollary 4.7. Let G0 \subset G \subset \Omega be interior subregions of \Omega and u \in H1+s(G)
with 1

2 < s \leq k and [s] = max\{ n \in \BbbZ | n \leq s\} (\BbbZ is the set of integers). Suppose
h \lesssim d := dist(\partial G0, \partial G) \lesssim 1. Then, for 0 \leq p \leq k  - 1, we have

\| e\| 1,G0
\lesssim hs| u| s+1,G + (h/d)s

[s]+1\sum 
j=0

d[s] - j | u| [s]+1 - j,G + d - p - 1\| e\|  - p,G.(4.47)

Furthermore, if u \in Hs+2(G),

\| e\| 0,G0 \lesssim hs+1| u| s+2,G + (h/d)s+1

[s]+2\sum 
j=0

d[s]+2 - j | u| [s]+2 - j,G + d - p\| e\|  - p,G.(4.48)
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Proof. Let D0(xi) \subset D(xi) \subset \Omega be two concentric discs centered at xi with radii
r/2 and r, respectively. Note that \=G0 can be covered by a finite number of discs
D0(xi) such that xi \in \=G0, and \cup iD(xi) is a subset of G. Thus, it suffices to show the
estimates (4.47) for the two discs D0(xi) and D(xi). To simplify the notation, we let
D0 = D0(xi) and D = D(xi) below.

We use a local coordinate system on D, such that xi is the origin. Then, the
dilation \^x = (x - xi)/d translates D0 and D to \^D0 and \^D with dist(\partial \^D0, \partial \^D) = 1/2.
Meanwhile, for a function v on D, we define \^v(\^x) = v(x). Therefore, by the scaling
argument, we have

| \^e| \sigma , \^D0
= d\sigma  - 1| e| \sigma ,D0

, \sigma \geq 0,(4.49)

and \^e satisfies

ah(\^e, \^v
\ast ) = 0,(4.50)

where \^v \in \r Sh/d( \^D). Therefore, using Theorem 4.5 with \^e and h replaced by h/d on

interior regions \^D0 \subset \^D, we have

\| \^e\| 1, \^D0
\lesssim hsd - s\| \^u\| s+1, \^D + \| \^e\|  - p, \^D,(4.51)

\| \^e\| 0, \^D0
\lesssim hs+1d - s - 1\| \^u\| s+2, \^D + \| \^e\|  - p, \^D.(4.52)

In addition, by the definition of the H - p norm and d \leq 1, for 0 \leq j \leq p, we have

\| \^e\|  - j, \^D \leq d - 1 - j\| e\|  - j,D.(4.53)

Then by (4.49) and (4.51)--(4.53), we obtain

\| e\| 1,D0
\lesssim hs| u| s+1,D + (h/d)s

[s]+1\sum 
j=0

d[s] - j | u| [s]+1 - j,D + d - p - 1\| e\|  - p,D,

\| e\| 0,D0 \lesssim hs+1| u| s+2,D + (h/d)s+1

[s]+2\sum 
j=0

d[s]+2 - j | u| [s]+2 - j,D + d - p\| e\|  - p,D,

which completes the proof.

Remark 4.8. Theorem 4.5 is the special case of Corollary 4.7 where d is a constant
independent of h. According to Theorem 4.5, the H1 norm of the error in an interior
region away from the singular point is bounded by the combination of the best local
approximation error in the finite element space and a negative norm of the interior
error. Note that for finite volume methods, the term \| e\|  - p,G in general is determined
by the smoothness of u and the adjoint problem.

Corollary 4.7 provides the interior error estimates when the boundary distance
between the two interior regions is small. An implication of these estimates is that if
the interior region of interest G0 is close to the singular point, we have d = \scrO (h). In
this case, the additional factors (functions of d) in the estimates (4.47) can override
the high-order convergence in \| e\|  - p,G (see Theorem 3.2) and consequently make the
upper bounds of the local error in G0 comparable to the upper bounds of the global
error.
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Fig. 5.1. The computational domain of Example 5.1 and the interior domain (in red).

5. Numerical tests. In this section, we provide numerical results to support
our theoretical findings in Theorem 4.5.

Example 5.1. We consider the problem (1.1) with identity matrix on the domain
\Omega = ([ - 1, 1]2 \setminus [0, 1]\times [ - 1, 0]) (i.e, L-shape Figure 5.1), which has the exact solution

u = a
2
3 sin

\biggl( 
2

3
\mu 

\biggr) 
 - a2

4
, a =

\sqrt{} 
x2 + y2, \mu = arctan

\Bigl( y
x

\Bigr) 
,

and the right-hand function f = 1.

We see that u \in H5/3 - \epsilon (\Omega ), where \epsilon > 0 is arbitrarily small and hence s = 2/3 - \epsilon .
In this case, we see that f \in C\infty . Since the largest interior angle of the domain is
\theta = 3\pi 

2 , we know the auxiliary problem associated with \psi \in H1+t, where 0 < t < 2/3.
From (3.13), we derive that for any 0 \leq p \leq k  - 1

\| e\|  - p,\Omega \lesssim h4/3 - 2\epsilon \| u\| 5/3 - \epsilon ,\Omega .(5.1)

For this specific example, the convergence order in any negative norm is no better
than that in the L2(\Omega ) norm. Meanwhile, we observe that u is singular at z = (0, 0),
and u is of C\infty in the interior domain G0 = [ 14 ,

1
4 ]

2 which is away from z.
Substituting the inequality (5.1) to estimates in Theorem 4.5, we obtain

\| e\| 1,G0
\lesssim hk\| u\| k+1,G1

+ h4/3 - 2\epsilon \| u\| 5/3 - \epsilon ,\Omega ,(5.2)

\| e\| 0,G0 \lesssim hk+1\| u\| k+1,G1 + h4/3 - 2\epsilon \| u\| 5/3 - \epsilon ,\Omega ,(5.3)

where G1 \subset \Omega is slightly larger than G0. Hence, for k = 1 the interior estimate in H1

norm should be optimal, but for k \geq 2, it should be at most h4/3 - 2\epsilon . While for the
L2 norm, the interior estimate yields no better than the global convergence.

In Table 5.1, we display the numerical results for the finite volume approximation
of Example 5.1. We see in the table that the estimates in the global L2 and H1 norms
are \scrO (h4/3 - 2\epsilon ) and \scrO (h2/3 - \epsilon ) for both k = 1, 2, while the local error in an interior
domain G0 is optimal only for k = 1 in the H1 norm but for other cases the convergent
rates are around h

4
3 . It demonstrates that the numerical results are consistent with

our theoretical prediction in (5.2) and (5.3) and therefore verify the theory.

Example 5.2. We consider the problem on the domain \Omega = [0, 1]2 with the exact
solution

u = x(1 - x)y(1 - y)a - 
3
2 ,

where a =
\sqrt{} 
x2 + y2.
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Table 5.1
Example 5.1: The convergence rates.

Global domain \Omega Interior domain G0

h \| e\| 0,\Omega Order \| e\| 1,\Omega Order \| e\| 0,G0
Order \| e\| 1,G0

Order

Q1 1/64 7.40E-04 -- 3.53E-02 -- 6.54E-05 -- 1.49E-03 --
1/128 2.93E-04 1.34 2.23E-02 0.66 2.57E-05 1.35 7.40E-04 1.01
1/256 1.16E-04 1.34 1.44E-02 0.66 1.01E-05 1.34 3.69E-04 1.00
1/512 4.58E-05 1.34 9.11E-03 0.66 4.00E-06 1.34 1.84E-04 1.00

Q2 1/64 1.39E-04 -- 1.54E-02 -- 1.16E-05 -- 4.57E-05 --
1/128 5.45E-05 1.35 9.72E-03 0.67 4.61E-06 1.33 1.77E-05 1.37
1/256 2.15E-05 1.34 6.13E-03 0.67 1.83E-06 1.33 6.93E-06 1.35
1/512 8.47E-06 1.34 3.86E-03 0.67 7.25E-07 1.33 2.74E-06 1.34

Table 5.2
Example 5.2: The convergence rates.

Global domain \Omega Interior domain G0

h \| e\| 0,\Omega Order \| e\| 1,\Omega Order \| e\| 0,G0
Order \| e\| 1,G0

Order

Q2 1/8 2.03E-03 -- 1.46E-01 -- 1.31E-05 -- 3.94E-04 --
1/16 7.23E-04 1.49 1.04E-01 0.49 2.39E-06 2.45 9.89E-05 1.99
1/32 2.57E-04 1.49 7.38E-02 0.49 4.25E-07 2.50 2.47E-05 2.00
1/64 9.10E-05 1.50 5.23E-02 0.50 7.48E-08 2.50 6.18E-06 2.00

Q3 1/32 1.07E-04 -- 4.67E-02 -- 7.11E-08 -- 3.94E-07 --
1/64 3.79E-05 1.50 3.30E-02 0.50 1.26E-08 2.50 6.14E-08 2.67
1/128 1.34E-05 1.50 2.33E-02 0.50 2.23E-09 2.50 1.01E-08 2.61
1/256 4.74E-06 1.50 1.65E-02 0.50 3.94E-10 2.50 1.70E-09 2.56

We can see that u \in H3/2 - \epsilon (\Omega ) for \epsilon > 0 arbitrarily small and hence s = 1/2 - \epsilon .
Note that the singularity in u is around the origin z = (0, 0). The largest interior angle
is \theta = \pi /2, which indicates that the function in the duality argument \psi \in H1+t(\Omega )
with 0 < t < 2. From (3.13), for any 1 \leq p \leq k  - 1 with k \geq 2 we can derive

\| e\|  - p \lesssim h2.5 - 2\epsilon \| u\| 3/2 - \epsilon .(5.4)

By (2.14) and (2.10) we expect to see the convergence in the global L2 and H1

norms be \scrO (h3/2 - \epsilon ) and \scrO (h1/2 - \epsilon ), respectively. Considering the interior domain
G0 = [ 12 ,

3
4 ]

2, the solution u is smooth. Applying (5.4) in Theorem 4.5, we obtain that
for all u \in Hk+1(G1) (G1 is slightly larger than G0 and u is smooth in G1)

\| e\| 1,G0
\lesssim hk\| u\| k+1,G1

+ h2.5 - 2\epsilon \| u\| 5/3 - \epsilon ,\Omega ,(5.5)

\| e\| 0,G0
\lesssim hk+1\| u\| k+1,G1

+ h2.5 - 2\epsilon \| u\| 5/3 - \epsilon ,\Omega .(5.6)

Therefore, for k = 2 the interior convergence rates should be \scrO (h2) (resp., \scrO (h2.5 - 2\epsilon ))
in H1 (resp., L2) norm, while the interior accuracy should be \scrO (h2.5 - 2\epsilon ) in H1 and
L2 norms for k = 3.

The numerical results of Example 5.2 are listed in Table 5.2. We can see from
the table that the interior and global estimates are consistent with our theoretical
prediction.

6. Conclusion. The error analysis for high-order FVEM is a challenging task.
This paper is one in a series that attempts to set up a mathematical foundation for a
family of high-order FVEM over quadrilateral meshes. In previous works [17, 25, 43],
we analyzed the stability, H1 error, L2 error, and maximum-norm error of high order
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FVEM over quadrilateral meshes. In this article, we present our study on negative-
norm error estimates and interior error estimates, especially for problems with low-
regularity solutions.

We point out that as in the L2-norm estimates for the FVEM, we require a slightly
stronger regularity to achieve optimal convergence order for the negative-norm error
estimates than that for the FEM. Consequently, the regularity requirement to obtain
optimal convergence order in a local domain is also a little bit stronger than that for
the FEM.
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