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In this article, we consider the problem of optimal approximation of eigenfunctions of Schrödinger operators
with isolated inverse square potentials and of solutions to equations involving such operators. It is known in
this situation that the finite element method performs poorly with standard meshes. We construct an alter-
native class of graded meshes, and prove and numerically test optimal approximation results for the finite
element method using these meshes. Our numerical tests are in good agreement with our theoretical results.
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I. INTRODUCTION AND STATEMENT OF MAIN RESULTS

Schrödinger-type operators of the form H = −� + V with inverse square potentials V arise
in a variety of interesting contexts motivated by continuum mechanics, by quantum physics, by
theoretical numerical analysis considerations, and by questions in other areas. The purpose of this
article is to develop numerical approximation tools for studying the spectra of such operators. Let
us denote by ρ the smoothed distance to the set S of singular points of V . The standard example
of a Schrödinger operator with c/ρ potential is a special case of the inverse square potentials we
consider, where the function ρ2V vanishes to order 1 at the singularity, and the results in this
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article do apply to such operators. However, in addition, Hamiltonians with true inverse square
potentials arise in relativistic quantum mechanics from the square of the Dirac operator coupled
with an interaction potential. They arise also in the interaction of a polar molecule with an elec-
tron. See [1, 2] for further applications of inverse square potentials in physics. See also [3–9] for
related results on operators with singular coefficients.

Consider a Hamiltonian operator H := −� + V that is periodic on R3 with periodicity lat-
tice �. The standard approach to studying the spectrum of H on complex function spaces is
by considering the associated operators on Bloch waves for every vector in the first Brillouin
zone for the lattice. Mathematically speaking, this associates to H a family of Bloch operators,
Hk := − ∑3

j=1(∂j +ikj )
2 +V , parametrized over vectors k in the fundamental domain of the dual

lattice to �, which act on �-periodic functions in R3, and thus have discrete spectra. (The defin-
ition of the operators Hk will be discussed in more detail below.) Equivalently, we can consider
the Bloch operators as acting on functions on the three-torus obtained by identifying opposite
sides of the fundamental domain of the lattice.

When the potential is smooth, the eigenfunctions of the operators Hk are smooth, and therefore
the associated eigenvalue problems on the torus can be approximately solved using a standard
mesh with the finite element method. Further, in this case, again because the eigenfunctions are all
smooth, the convergence rate for the finite element approximations in terms of standard Sobolev
spaces can be made as high as desired by choosing to work with elements of sufficiently high
polynomial degree on the tetrahedra of the mesh. However, when the potential, V , has singu-
larities, the eigenfunctions of Hk have singularities at the singularities of the potential (which
can even blow up like ρα for α ∈ (−1/4, 0)), and in particular have limited Sobolev regularity.
Thus, the convergence rates for these methods are less than optimal (suboptimal) if quasiuniform
meshes or other classical approximation methods are used.

For problems with singular solutions, the phenomenon of the classical finite element methods
exhibiting suboptimal convergence rates has been observed by many authors. For instance, in the
setting of reentrant corners, the problem was studied by many authors, including by Apel et al. in
[10], by Babuška et al. in [11], by Bacuta et al. in [12], by Demkowicz et al. in [13], by Mazzucato
et al. [14], and by Wahlbin in [15]. A consequence of their research is that the framework of
quasiuniform meshes leads to suboptimal rates of convergence in the finite element method for
problems on nonconvex domains. We can make the ideas of “optimal” and “suboptimal” rates of
convergence precise as follows. Let N be the number of degrees of freedom in the finite element
space. By “optimal rates of convergence” we mean the rates of convergence of the order N−m/3

obtained using quasiuniform meshes and continuous piecewise polynomials of degree m when
the solution is in Hm+1 (see [16, 17] and [18]). Any rate of convergence that is less than optimal
will be called suboptimal.

In this article, we present a modification of the finite element method for approximating eigen-
values and eigenfunctions of the Bloch operators, Hk, in the case that the potential V has inverse
square singularities. The modification uses graded meshes near the singularities. The workhorse
theorem in this article is Theorem 3.1, which is an approximation theorem for functions in a family
of weighted Sobolev spaces using the modified finite elements. By Theorem 2.1 from [19], all
eigenfunctions of the operators Hk can be decomposed into the sum of a well-understood singular
part and a part that lies in all weighted Sobolev spaces in this family. As a corollary of these
two theorems, we get our main theorems, Theorems 1.1 and 1.2, which give convergence results
in terms of the weighted Sobolev spaces for the eigenvalue problem for Hk and for solutions
to inhomogeneous equations of the form (L + Hk)u = f using the finite element method with
these meshes. The results show that the convergence rates can again be made as high as desired
by choosing sufficiently high-degree polynomials on the tetrahedra of the mesh. In particular, in
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the case of linear elements, we recover the convergence rate obtained for linear elements in the
smooth setting. In the last section, we carry out numerical tests using linear elements that show
good agreement with these theoretical results.

A. Notation and Results

Before we can state our approximation results, we must fix some notation and state the assump-
tions we make about our Hamiltonian operators. As above, consider a Hamiltonian operator
H := −� + V that is periodic on R3 with periodicity lattice �. Its fundamental domain is a par-
allelepiped whose faces can be identified under the symmetries of H to form the torus T = R3/�,
which is how we will denote this fundamental domain in the remainder of this article. Let ρ(x)

be a continuous function on T that is given by ρ(x) = |x − p| for x close to p, is smooth except
at the points of S, and may be assumed to be equal to one outside a neighborhood of S.

We need two assumptions about the potentials V that we will consider in this article. First,
we assume that V is smooth except at a finite set of points S ⊂ T = R3/�, near which it has
singularities of the form Z/ρ2, where Z is continuous on T and smooth in generalized spherical
coordinates (r , x ′), r ∈ [0, ∞), x ′ ∈ S2 around p ∈ S. We want to make this more precise. Let O

be the origin in R3. By blowing up O in R3 we shall mean replacing R3 with S2 ×[0, ∞) such that
(r , x ′) in the blown up space corresponds to rx ′ ∈ R3. In this way, the point O was replaced by
the copy S2 × {0} of the two-dimensional (2D) sphere S2. A function f : R3 � {0} → R will be
called smooth in generalized polar coordinates if it extends to a smooth function on S2 × [0, ∞).
Let us denote then by M the smooth manifold with boundary obtained by replacing each point
p ∈ S with the 2D sphere p × S2, that is, by blowing up each singular point of V , according to
the procedure just explained. Smoothness in polar coordinates around each singular point then
means smoothness on M:

Assumption 1: Z := ρ2V ∈ C(T) ∩ C∞(M). (1)

(While the local structure of M is the one just explained, it is difficult to give a global description
of M, as a set. However, M := T � S ∪ S × S2, where the union is disjoint, with the smooth
structure defined above.) Assumption 1, more precisely the continuity of Z at S, allows us to
formulate our second assumption. Namely,

Assumption 2: η := min
p∈S

√
1/4 + Z(p) > 0. (2)

We will see that the value of η determines the strength of the singularity in the eigenfunctions
associated to the Hamiltonians Hk. In particular, we assume that for all p ∈ S, Z(p) > −1/4.
These assumptions are sharp in the sense that the analysis yields fundamentally different results
if either one fails. In particular, the value Z(p) = −1/4 corresponds to the critical coupling for
an isolated inverse square potential in R3 where the system undergoes a transition between the
conformal and nonconformal regimes [1]. If the first assumption fails, then the available analytic
techniques are much weaker, see for instance [20,21]. In either case, the approximation theorems
in this article fail if either assumption is violated. More details of this are included in [19], and
a study of the analysis when these assumptions are relaxed will be examined in a forthcoming
paper.

We are interested in understanding the spectrum and eigenfunctions of the operators Hk. As
afore mentioned, we do this by studying Bloch waves. Recall that if k is an element of the first
Brillouin zone of �, that is, is an element of the fundamental domain of the dual lattice of �,
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then a Bloch wave with wave vector k is a function in L2
loc(R

3) that satisfies the semiperiodicity
condition

ψk(x + X) = eik·Xψk(x) ∀X ∈ �. (3)

It is well-known that such a Bloch wave can be written as

ψk(x) = eik·xuk(x) (4)

for a function uk that is truly periodic with respect to � and thus can be considered as living on
the three-torus T [22]. We define the k–Hamiltonian Hk on L2(T) by

Hk := −
3∑

j=1

(∂j + ikj )
2 + V . (5)

Then, we have further that if a Bloch wave ψk satisfies Hψk = λψk, then the function
uk := e−ik·xψk(x) is a standard L2-eigenfunction of Hk with eigenvalue λ.

Let λj , j ≥ 1, be the eigenvalues of Hk, arranged in increasing order, . . . ≤ λj ≤ λj+1 ≤ . . .,
and repeated according to their multiplicities. We know that Hk is self-adjoint and has an ortho-
normal basis of eigenvectors by the results of [19]. In particular, in this case, by the multiplicity
of an eigenvalue λ we shall mean the dimension of the corresponding eigenspace E(λ). We fix an
eigenbasis (uj ) of Hk. One of our goals is to approximate the eigenvalues λj and the corresponding
eigenfunctions uj .

As usual, for our finite element approximation results, we consider a sequence Sn of finite
dimensional subspaces of the domain of Hk and project onto Sn to obtain a discrete formulation.
To define the appropriate projection, we use Theorem 2.1, which says that for sufficiently large
L ≥ 0, L + Hk is an isomorphism between appropriate weighted Sobolev spaces. This ensures
the coercivity of the natural sesquilinear form a defined as follows:

a(v, w) := (
(L + Hk)v, w

) = (
(∇ + ik)v, (∇ + ik)w

) + ((L + V )v, w), (6)

where (∇+ik)u is the vector with components (∂j +ikj )u and (v, w) := ∫
T
vwdx is the sesquilin-

ear inner product on the complex Hilbert space L2(T). Now let Rn denote the projection onto
Sn taken with respect to the form a(y, w). The operator Rn will be called the associated Riesz
projection, as usual. Let also Hk,n := RnHkRn be the associated finite element approximation
of Hk acting on Sn. Denote by λj ,n the eigenvalues of the approximation Hk,n, again arranged in
increasing order, . . . ≤ λj ,n ≤ λj+1,n ≤ . . ., and repeated according to their multiplicities. The
spaces Sn we use for our theorems are defined in terms of a sequence of graded tetrahedral meshes
Tn := kn(T0) on T (sometimes called triangulations), given by sequential refinements, associated
to a scaling parameter k, of an original tetrahedral mesh T0. We describe the meshing refinement
procedure in detail in Section III. We will take Sn = S(Tn, m), the finite element spaces associated
to these meshes (i.e, using continuous, piecewise polynomials of degree m).

We now state our two main theorems, which will be proved in the main body of the paper.
Both of these theorems are given in terms of weighted Sobolev spaces whose definition we now
recall

Km
a (T; S) := {v : T � S → C, ρ |α|−a∂αv ∈ L2(T), ∀ |α| ≤ m}, (7)
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with seminorms and norms

|v|2Km
a (T;S)

:=
∑
|α|=m

‖ρ |α|−a∂αv‖2
L2(T)

, ‖v‖2
Km

a (T;S)
=

∑
|α|≤m

|v|2Km
a (T;S)

. (8)

These spaces have been considered in many other papers, most notably in Kondratiev’s ground-
breaking paper [23]. Our first main theorem is a theoretical result for the finite element method
approximation of eigenvalues and eigenfunctions of Hk using tetrahedralisations with graded
meshes:

Theorem 1.1. Let λj be an eigenvalue of Hk and fix a ≤ m, 0 < a < η, with η =
minp∈S

√
1/4 + Z(p), as in Assumption 2. Consider the spaces Sn associated to the nested

sequenceTn of meshes on T defined by the scaling parameter k = 2−m/a and piecewise polynomials
of degree m. Then there exists a constant c(λj , a) with the following property. Let Rn be the asso-
ciated Riesz projections. Denote by λj ,n the eigenvalues of the approximation Hk,n := RnHkRn

acting on Sn, again arranged in increasing order, . . . ≤ λj ,n ≤ λj+1,n ≤ . . ., and repeated
according to their multiplicities. Then

|λj − λj ,n| ≤ c(λj , a) dim(Sn)
−2m/3.

Moreover, let E′
n(λ) be the sum of the eigenspaces E(λj ,n) for λj = λ. Then for each j , there exist

suitable uj ,n ∈ E′
n(λj ) such that

‖uj − uj ,n‖H1(T) ≤ ‖uj − uj ,n‖K1
1(T;S) ≤ c(λj , a) dim(Sn)

−m/3.

Recall that the analogous result in the setting of smooth potentials is the same as this result,
except the mesh is not graded, which corresponds to the parameter value k = 0.5, and the weighted
Sobolev space in the estimate is replaced with the standard Sobolev space H 1. Thus, our result
shows that if η ≥ m, ungraded meshes give the optimal convergence rate for elements of degree
m. Moreover, if η < m, our numerical tests seem to indicated that graded meshes are necessary
to obtain optimal convergence.

For our second main theorem, we consider the finite element approximations of the equation

(L + Hk)v = f , for L > C0, (9)

where C0 is the constant from Theorem 2.1 below. Let v be the solution of Eq. (9) above. We then
define the usual Galerkin finite element approximation vn of v as the unique vn ∈ Sn := S(Tn, m)

such that

a(vn, wn) := (f , wn), for all wn ∈ Sn. (10)

Here is our second main theorem.

Theorem 1.2. The sequence Tn := kn(T0) of meshes on T defined using the k-refinement, for
k = 2−m/a , 0 < a < η, a ≤ m, has the following property: the sequence vn ∈ Sn := S(Tn, m) of
finite element (Galerkin) approximations of v from Eq. (10) satisfies

‖v − vn‖K1
1(T;S) ≤ C dim(Sn)

−m/3‖f ‖Km−1
a−1 (T;S)

, (11)

where C is independent of n and f .
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The proofs of these theorems use the regularity results from [19], the approximation result
of Theorem 3.1, and some general results (Cèa’s Lemma and results of Babuška and Osborn
on the approximation of eigenvectors). We will recall the statements of the relevant regularity
results from that paper and some additional background material in Section II. Thus, although as
indicated by the title, [19] is the first part of an extended project of which this article forms the
second part, this article may be read independently of [19].

The remainder of the article is organized as follows. In Section III, we first describe the
k-refinement algorithm for the 3D tetrahedral meshes, which results in a sequence of meshes Tn.
We then prove a general interpolation approximation result for the sequence of finite element
spaces associated to this sequence of meshes. In Section IV, we use this general approximation
result to prove our main approximation results. This section includes in particular the proofs of
Theorem 1.1 and Theorem 1.2, as well as an additional result about the condition number of
the stiffness matrix associated to the finite element spaces Sn. In the last section, Section V, we
discuss results of numerical tests of the method for solving equations of the form (L+Hk)v = f

and compare them to the theoretical results.

II. BACKGROUND RESULTS

In this section, we recall some definitions and results from [19], as well as the classical approx-
imation result for Lagrange interpolants (see [16–18, 24]), that will be used in the proofs of the
approximation theorems above.

The first result that we recall guarantees the existence of solutions of equations of the form
(L + Hk)v = f for L greater than some constant C0, and identifies the natural domain of Hk.
Let us fix smooth functions χp supported near points of S such that the functions χp have disjoint
supports and χp = 1 in a small neighborhood of p ∈ S. Then Theorem 1.1, Lemma 3.4, and
Proposition 3.6 from [19] combine to give right away the following result.

Theorem 2.1. Let V be a potential satisfying both Assumptions 1 and 2. Then there exists a
constant C0 such that L + Hk : Km+1

a+1 (T; S) → Km−1
a−1 (T; S) is an isomorphism for all m ∈ Z≥0,

all |a| < η, and all L > C0. In addition, recall the form a(·, ·) from (6). Then, we have that a(·, ·)
is continuous on K1

1(T; S) × K1
1(T; S) and coercive. Namely, there is C > 0, such that, for any

u ∈ K1
1(T; S),

a(u, u) ≥ C‖u‖2
K1

1(T;S)
. (12)

Moreover, for any u ∈ Km+1
a+1 (T; S) satisfying (L + Hk)u = f ∈ Hm−1(T), we can find constants

ap ∈ R such that

ureg := u −
∑
p∈S

apχpρ
√

1/4+Z(p)−1/2 ∈ Km+1
2 (T; S),

with Z as in Assumption 1.

We obtain, in particular, that Hk has a natural self-adjoint extension, the Friedrichs extension.
Therefore, from now on, we shall extend Hk to the domain of the Friedrichs extension of L+Hk,
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as in the above Theorem. Let us denote by D(Hk) its domain. Then, Theorem 2.1 gives that
D(Hk) = K2

2(T; S) for minp Z(p) > 3/4, and, in general,

D(Hk) ⊂ K2
a+1(T; S), for a < η := min

p∈S

√
1/4 + Z(p) and a ≤ 1 (13)

so that D(Hk) ⊂ K1
1(T; S) ⊂ H 1(T), since we assumed that minp Z(p) > −1/4.

We can now state a regularity theorem for the eigenfunctions of Hk near a point p ∈ S, or
equivalently, for Bloch waves associated to the wavevector k.

Theorem 2.2. Assume that V satisfies Assumptions 1 and 2 and let u ∈ D(Hk) satisfy
Hku = λu, for some λ ∈ R. Then, we can find constants ap ∈ R such that

u −
∑
p∈S

apχpρ
√

1/4+Z(p)−1/2 ∈ Km+1
b+1 (T; S), ∀b < min

p∈S

√
9/4 + Z(p).

In particular, u ∈ Km+1
a+1 (T; S), where a < η := minp∈S

√
1/4 + Z(p) and m ∈ Z+ are arbitrary.

See also [25,26] for some related classical results in this area. Theorems 2.1 and 2.2 lead to an
estimate for the distance from an element in the domain of Hk to the approximation spaces that
we construct using graded meshes. The key issue in the numerical approximation for the problem
associated with Hk is the effectiveness of the algorithm resolving singularities of the form ρα ,
where α > −1/2 can be negative.

Next, recall the definition of Lagrange interpolants associated to a mesh. Let us choose P to
be a parallelepiped that is a fundamental domain of the lattice �. That is, R3 = ∪y∈�(y + P)

and all y + P disjoint. Let T = {Ti} be a mesh on P, that is a mesh of P with tetrahedra Ti .
We can identify this T with a mesh T ′ of the fundamental region of the lattice � (i.e, to the
Brillouin zone of �). Fix an integer m ∈ N that will play the role of the order of approximation.
We denote by S(T , m) the finite element space associated to the degree m Lagrange tetrahedron.
That is, S(T , m) consists of all continuous functions χ : P → R such that χ coincides with
a polynomial of degree ≤ m on each tetrahedron T ∈ T and χ is periodic. This means the
values of χ on opposite faces coincide, so χ will have a continuous, periodic extension to the
whole space, or alternatively, can be thought of as a continuous function on T . We shall denote
by wI = wI ,T ∈ S(T , m) the Lagrange interpolant of w ∈ H 2(P). Let us recall the definition
of wI ,T . First, given a tetrahedron T , let [t0, t1, t2, t3] be the barycentric coordinates on T . The
nodes of the degree m Lagrange tetrahedron T are the points of T whose barycentric coordinates
[t0, t1, t2, t3] satisfy mtj ∈ Z. The degree m Lagrange interpolant wI ,T of w is the unique function
wI ,T ∈ S(T , m) such that w = wI ,T at the nodes of each tetrahedron T ∈ T . The shorter notation
wI will be used when only one mesh is understood in the discussion.

The classical approximation result for Lagrange interpolants ([16–18, 24]) can now be stated.

Theorem 2.3. Let T be a mesh of a polyhedral domain D ⊂ R3 with the property that all
tetrahedra comprising T have (plane and dihedral) angles ≥ α and edges ≤ h. Then there exists
a constant C(α, m) > 0 such that, for any u ∈ Hm+1(D),

‖u − uI‖H1(D) ≤ C(α, m)hm‖u‖Hm+1(D).

Finally, we recall two properties of functions in the weighted Sobolev spaces Km
a (T; S) that are

useful for the analysis of the approximation scheme we use with graded meshes. The proofs of these
lemmas are contained in [27] and are based on the definitions and straightforward calculations.
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Lemma 2.4. Let D be a small neighborhood of a point p ∈ S such that on D, ρ is given by
distance to p. Let 0 < γ < 1 and denote by γD the region obtained by radially shrinking around
p by a factor of γ . Then

‖w‖Km
a (D) = γ a−3/2‖w‖Km

a (γD).

Lemma 2.5. If m ≥ m′, a ≥ a′ and 0 < ρ < δ on D, then

‖w‖Km′
a′ (D)

≤ δa−a′ ‖w‖Km
a (D).

We can now continue to the definition of the mesh refinement technique and the proof of the
general approximation theorem underlying our two main theorems.

III. APPROXIMATION AND MESH REFINEMENT

Let T be a mesh of T such that any point p ∈ S is a node of T . Note that the singular expansion
of Theorem 2.2 shows that the value of an eigenfunction u of Hk at a singular point in S may
not be defined. Therefore, we define the modified degree m Lagrange “interpolant” uI = uI ,T
associated to the mesh T , such that{

uI (x) = u(x) for any node x /∈ S
uI (x) = 0 if x ∈ S.

(14)

Alternatively, we can take the modified Lagrange interpolant to be zero on the whole tetrahedron
that contains a singular point.

Our two main theorems follow from standard results, such as Céa’s Lemma (for the proof of
Theorem 1.2) and the results used in [28–32] (for the proof of Theorem 1.1), together with the
following underlying approximation theorem:

Theorem 3.1. There exists a sequence Tn of meshes of T that depends only on the choice of a
parameter k = 2−m/a , 0 < a < η and a ≤ m, with the following property. If u ∈ Km+1

a+1 (T; S),
then the modified Lagrange interpolant uI ,Tn ∈ S(Tn, m) of u satisfies

‖u − uI ,Tn‖K1
1(T;S) ≤ C dim(Sn)

−m/3‖u‖Km+1
a+1 (T;S)

,

where C depends only on m and a (so it is independent of n and u).

In this section, we will define the mesh refinement process and prove Theorem 3.1. The first
step is to describe the refinement procedure that results in our sequence of meshes (or triangu-
lations). This is based on the construction in [33] and in [34]. Thus, we refer the reader to those
papers for details, and here give only an outline and state the critical properties. The second step
is to prove a sequence of simple lemmas used in the estimates. The third step is to prove the esti-
mate separately on smaller regions. This uses the scaling properties of the meshes in Lemmas 2.4
and 2.5 together with Theorem 2.3.
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A. Construction of the Meshes

We continue to keep the approximation degree m fixed throughout this section. Fix a parameter
a and let k = 2−m/a . In our estimates, we will chose a such that a < η := minp

√
1/4 + Z(p)

and a ≤ m. Let l denote the smallest distance between the points in S. Choose an initial mesh T0

of P with tetrahedra such that all singular points of V (i.e, all points of S) are among the vertices
of T0 and no tetrahedron has more than one vertex in S. We assume that this mesh is such that if
F1 and F2 are two opposite faces of P, which hence correspond to each other through periodicity,
then the resulting triangulations of F1 and F2 will also correspond to each other, that is, they are
congruent in an obvious sense.

We start with a special refinement of an arbitrary tetrahedron T that has one of the vertices
in the set S. Our assumptions then guarantee that all the other vertices of T will not be in S.
We use the refinement in [27, 35], which generalizes the 2D refinement introduced in [36] (this
refinement was also used in [14, 37, 38]) and we thus introduce the k-refinement algorithm for a
single tetrahedron that divides T into eight subtetrahedra as follows:

Algorithm 3.2. k-refinement for a single tetrahedron: Let {x0, x1, x2, x3} be the vertices of T .
Suppose that x0 ∈ S. Therefore, x0 is the vertex around which a grading ratio k ∈ (0, 1/2] will
be applied in the next refinement. We first generate new nodes xij , 0 ≤ i < j ≤ 3, on each
edge of T , such that xij = (xi + xj )/2 for 1 ≤ i < j ≤ 3 and x0j = (1 − k)x0 + kxj for
1 ≤ j ≤ 3. Note that the node xij is on the edge connecting xi and xj . Connecting these nodes
xij on all the faces, we obtain four subtetrahedra and one octahedron. The octahedron then is
cut into four tetrahedra using x13 as the common vertex. Therefore, after one refinement, we
obtain eight subtetrahedra (Fig. 1), namely, we obtain the tetrahedra with the following sets of
vertices:

{x0, x01, x02, x03}, {x1, x01, x12, x13}, {x2, x02, x12, x23}, {x3, x03, x13, x23}
{x01, x02, x03, x13}, {x01, x02, x12, x13}, {x02, x03, x13, x23}, {x02, x12, x13, x23}.

Algorithm 3.3. k-refinement for a mesh: Let T be a triangulation of the domain P such that
all points in S are among the vertices of T and no tetrahedron contains more than one point in
S among its vertices. Then, we divide each tetrahedron T of T that has a vertex in S using the
k-refinement and we divide each tetrahedron T that has no vertices in S using the 1/2-refinement.
The resulting mesh will be denoted by k(T ). We then define Tn = kn(T0), where T0 is the initial
mesh of P.

FIG. 1. The initial tetrahedron {x0, x1, x2, x3} (left); eight subtetrahedra after one k-refinement (right),
k = |x0x01|

|x0x1| = |x0x02|
|x0x2| = |x0x03|

|x0x3| .
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Remark 3.4. According to [34], when k = 1/2, which is the case when the tetrahedron under
consideration is away from S, the recursive application of Algorithm 3.2 on the tetrahedron gen-
erates tetrahedra within at most three similarity classes. On the other hand, if k < 1/2, the eight
subtetrahedra of T are not necessarily similar. Thus, with one k-refinement, the subtetrahedra
of T may belong to at most eight similarity classes. Note that the first subtetrahedron in Algo-
rithm 3.2 is similar to the original tetrahedron T with the vertex x0 ∈ S and therefore, a further
k-refinement on this subtetrahedron will generate eight children tetrahedra within the same eight
similarity classes as subtetrahedra of T . Hence, successive k-refinements of a tetrahedron T in
the initial triangulation T0 will generate tetrahedra within at most three similarity classes if T

has no vertex in S. On the other hand, successive k-refinements of a tetrahedron T in the initial
triangulation will generate tetrahedra within at most 1 + 7 × 3 = 22 similarity classes if T has
a point in S as a vertex. Thus, our k-refinement is conforming and yields only nondegenerate
tetrahedra, all of which will belong to only finitely many similarity classes.

Remark 3.5. Recall that our initial mesh T0 has matching restrictions to corresponding faces.
Since the singular points in S are not on the boundary of P, the refinement on opposite bound-
ary faces of P is obtained by the usual mid-point decomposition. Therefore, the same matching
property will be inherited by Tn. In particular, we can extend Tn to a mesh in the whole space by
periodicity. We will, however, not make use of this periodic mesh on the whole space.

For each point p ∈ S and each j , we denote by Vpj the union of all tetrahedra of Tj that have
p as a vertex. Thus, Vpj is obtained by scaling the tetrahedra in Vp0 by a factor of kj with center
p. In particular, the level n ≥ j refinements of T0 give rise to a mesh on Rpj := Vp(j−1) � Vpj .
Define

 := P � ∪p∈SVp0.

According to Algorithm 3.3,  and ∪p∈SVp0 are triangulated differently. For Vp0, only the tetra-
hedra touching p are refined by the k-refinement (k < 0.5) (Algorithm 3.2) for each refinement,
while other tetrahedra are refined by the 1/2–refinement. For , we use the 1/2–refinement for
each refinement, which is, of course, a uniform refinement. Then, we can decompose P as the
union

P =  ∪p∈S

(
∪n

j=1 Rpj ∪ Vpn

)
, (15)

where each set in the union is a union of tetrahedra in Tn.

Remark 3.6. Note that the size of each simplex of Tn contained in  is O(2−n), the size of
each simplex of Tn contained in Rpj is O(kj 2−(n−j)), and the size of Vpn is O(kn). In addition,
the number of tetrahedra in Tn is O(23n) (see Algorithm 3.3).

Recall Eq. (10), where the finite element approximation vn ∈ S(Tn, m) to the equation
(L + Hk)v = f is defined. In this case, Tn is obtained by applying n times the k-refinements to
T0, where k = 2−m/a , 0 < a < η, a ≤ m, and L > C0 satisfies Theorem 2.1. Note that (12) and
the continuity of a(·, ·) give that the finite element solution vn ∈ K1

1 is well defined.
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B. Proof of Theorem 3.1

By construction, the restriction of Tn to Rpj scales to the restriction of Tn−j+1 to Rp1. We denote
by uI ,n = uI ,Tn the modified interpolation in (14) on Tn. The following lemma is based on the
definition of the k-refinement and the discussion in Remark 3.6.

Lemma 3.7. For all x ∈ Rpj and a function u(x), define by scaling the new function
û(ψ−(j−1)(x)) := u(x), where ψ−(j−1)(x) := p + (x − p)/k(j−1) is the dilation with ratio k−(j−1)

and center p. Then, uI ,n(x) = ûI ,n(ψ−(j−1)(x)) = ûI ,n−j+1(ψ−(j−1)(x)).

Recall that ρ2V ∈ C∞(M)∩C(T) and minp Z(p) > −1/4. That is, V satisfies Assumptions 1
and 2.

We can now give the proof of Theorem 3.1.

Proof. Recall that Vp0 consists of the tetrahedra of the initial mesh T0 that have p as a vertex,
and that all the regions Vp are away from each other (they are closed and disjoint). We used this
to define  := P � ∪pVp0. The region Vpj is obtained by dilating Vp with the ratio kj < 1 and
center p. Finally, recall that Rpj = Vp(j−1) � Vpj . Let R be any of the regions , Rpj , or Vpn.
Since the union of these regions is P, it is enough to prove that

‖u − uI ,Tn‖K1
1(R�S) ≤ C dim(Sn)

−m/3‖u‖Km+1
a+1 (R�S)

,

for a constant C independent of R and n. The result will follow by squaring all these inequalities
and adding them up. In fact, since dim(Sn)

−m/3 = O(2−nm), it is enough to prove

‖u − uI ,Tn‖K1
1(R�S) ≤ C2−nm‖u‖Km+1

a+1 (R�S)
, (16)

again for a constant C independent of R and n.
If R =  := P � ∪pVp0, the estimate in (16) follows right away from Theorem 2.3. For the

other estimates, recall that 0 < k = 2−m/a , where 0 < a < η and a ≤ m. We next establish the
desired interpolation estimate on the region R = Rpj , for any fixed p ∈ S and j = 1, 2, . . . , n.
Let û(x) = u(ψj−1(x)), where ψ−(j−1)(x) := p + (x −p)/k(j−1) is the dilation with ratio k−(j−1)

and center p. From Lemmas 2.4 and 3.7, we have

‖u − uI ,n‖K1
1(Rpj ) = (kj−1)1/2‖û − (̂uI ,n)‖K1

1(Rp1) = (kj−1)1/2‖û − ûI ,n−j+1‖K1
1(Rp1).

Since Km
a (Rp1) is equivalent to Hm(Rp1), we can apply Theorem 2.3 with h = O(2−(n−j+1))

to get

‖u − uI ,n‖K1
1(Rpj ) ≤ C(kj−1)1/22−m(n−j+1)‖û‖Km+1

a+1 (Rp1)
. (17)

Now applying Lemma 2.4 to scale back again and using also k = 2−m/a , we get that the right
hand side in (17)

C(kj−1)1/22−m(n−j+1)‖û‖Km+1
a+1 (Rp1)

= C(kj−1)a2−m(n−j+1)‖u‖Km+1
a+1 (Rpj )

≤ C2−mn‖u‖Km+1
a+1 (Rpj )

.

This proves the estimate in (16) for R = Rpj .
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It remains to prove this estimate for R = Vpn. For any function w on Vpn, we let ŵ(x) =
w(ψn(x)) be a function on Vp0. Therefore, by Lemma 2.4

‖u − uI ,n‖K1
1(Vpn) = (kn)1/2‖û − uI ,n‖K1

1(Vp0), (18)

and by Lemma 3.7 (which follows from the definition of the meshes Tk and from the fact that
interpolation commutes with changes of variables),

(kn)1/2‖û − uI ,n‖K1
1(Vp0) = (kn)1/2‖û − ûI ,0‖K1

1(Vp0). (19)

Now let χ be a smooth cutoff function on Vp0 such that χ = 0 in a neighborhood of p and = 1
at every other node of Vp0.

Define v̂ := û − χû. Then, by (14),

(kn)1/2‖û − ûI ,0‖K1
1(Vp0) = (kn)1/2‖v̂ + χû − ûI ,0‖K1

1(Vp0)

≤ (kn)1/2(‖v̂‖K1
1(Vp0) + ‖χû − ûI ,0‖K1

1(Vp0))

= (kn)1/2(‖v̂‖K1
1(Vp0) + ‖χû − (χû)I ,0‖K1

1(Vp0)). (20)

Since χ vanishes in the neighborhood of p, we can consider multiplication by χ as C∞ times a
degree 0 b-operator. Thus, it is a bounded operator on any weighted Sobolev space. Thus

‖v̂‖K1
1(Vp0) ≤ ‖v̂‖Km+1

1 (Vp0)

≤ ‖û‖Km+1
1 (Vp0)

+ ‖χû‖Km+1
1 (Vp0)

≤ C‖û‖Km+1
1 (Vp0)

, (21)

where C depends on m and, through χ , the nodes in the triangulation.
Using (18), (19), (20), (21), Lemma 2.5, and Theorem 2.3, we have

‖u − uI ,n‖K1
1(Vpn) ≤ C(kn)1/2(‖û‖Km+1

1 (Vp0)
+ ‖χû − (χû)I ,0‖K1

1(Vp0))

≤ C(kn)1/2(‖û‖Km+1
1 (Vp0)

+ ‖χû‖Hm+1(Vp0))

≤ C(kn)1/2(‖û‖Km+1
1 (Vp0)

+ ‖û‖Km+1
1 (Vp0)

)

≤ C‖u‖Km+1
1 (Vpn)

≤ Ckna‖u‖Km+1
a+1 (Vpn)

≤ C2−mn‖u‖Km+1
a+1 (Vpn)

.

This proves the estimate of Eq. (16) for R = Vpn and completes the proof of Theorem 3.1.

Remark 3.8. Theorem 3.1 is obtained for the grading parameter k = 2−m/a satisfying 0 < a < η

and a ≤ m. We can also always decrease k because η can be decreased. Going in the opposite
direction, that is, increasing k, will lead to weaker error estimates and convergence rates. For
instance, we may find the upper bound of the interpolation error as follows. The estimates on
‖u − uI ,n‖K1

1(Vpn) in the proof above give

‖u − uI ,n‖K1
1(Vpn) ≤ Ckna‖u‖Km+1

a+1 (Vpn)
≤ C(dim(Sn))

−a log2(1/k)/3‖u‖Km+1
a+1 (Vpn)

.
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Then, examining the estimates on Rpj and on , for 2−m/a < k ≤ 1/2, we have the following
global upper bound for the error estimate in the case of “insufficient grading”

‖u − uI ,n‖K1
1(T;S) ≤ Cdim(Sn)

−a log2(1/k)/3‖u‖Km+1
a+1 (T;S)

. (22)

Note that insufficient grading still leads to reduction in the error, though with a slower rate than
that for meshes with optimal grading parameter. This is numerically notable, especially when k is
close to the upper bound of the optimal range 2−m/a . See Section V for a comparison of numerical
tests for different values of the grading parameter k for good and for insufficient grading. The
results of those numerical tests seem to be in agreement with Eq. (22), but more tests would be
needed for a firm confirmation. We will certainly investigate this aspect in the future when more
computing power is available to us.

IV. APPLICATIONS TO FINITE ELEMENT METHODS

We can now turn to the proofs of the theorems stated in the introduction. First, Theorem 1.1
follows from our general approximation result, Theorem 3.1, and the standard results on approx-
imations of eigenvalues and eigenvectors (eigenfunctions in our case) discussed, for instance, in
[28–32]. Let λj be the eigenvalues of Hk arranged in increasing order and repeated according to
their multiplicities. Using the notation introduced in the introduction, we have the following. Let
us denote by E(λ) the eigenspace of Hk corresponding to the eigenvalue λ and by E1(λ) ⊂ E(λ),
the subset consisting of functions of K1

1(T; S)-norm one. Then, the following result is well known
(see for instance Eqs. (1.1) and (1.2) in [29]). We state it only for our operator Hk, although it is
valid for more general self-adjoint operators with compact resolvent.

Let Sn ⊂ K1
1(T; S) be a finite dimensional subspace. Let us denote by Rn : K1

1(T; S) → Sn

the projection in the inner product defined by the bilinear form a of Eq. (6) (the Riesz projection)
and by λj ,n the eigenvalues of RnHkRn arranged in increasing order and repeated according to
their multiplicities.

Theorem 4.1. For each j , there exists a constant Cj > 0 with the following property. Let us
denote εj := supu∈E1(λj ) infχ∈Sn ‖u − χ‖K1

1(T;S). Then

|λj − λj ,n| ≤ Cjε
2
j .

Furthermore, let E′
n(λ) be the sum of eigenspaces En(λj ,n) of RnHkRn corresponding to λj ,n with

λj = λ. Then, there exists wj ,n ∈ E′
n(λj ) such that

‖uj − wj ,n‖K1
1(T;S) ≤ Cjεj .

The proof of Theorem 1.1 will then be obtained from Theorem 4.1 as follows.

Proof. (of Theorem 1.1). We need to estimate supu∈E1(λ) infχ∈Sn ‖u−χ‖K1
1(T;S). To this end,

let us notice that any u ∈ E(λ) ⊂ K1
1(T; S) satisfies (L + Hk)u = (L + λ)u. Theorem 2.1

then gives ‖u‖Km+1
a+1 (T;S)

≤ Cm,λ‖u‖Km−1
a−1 (T;S)

for a suitably large Cm,λ that depends on λ and

Numerical Methods for Partial Differential Equations DOI 10.1002/num



ANALYSIS OF SCHRÖDINGER OPERATORS 1143

a < η. A bootstrap argument then gives for any u ∈ E(λ) that ‖u‖Km+1
a+1 (T;S)

≤ C ′
m,λ‖u‖K1

1(T;S).

Theorem 3.1 then gives for u ∈ E1(λj ) (thus ‖u‖K1
1(T;S) = 1), the following:

sup
u∈E1(λ)

inf
χ∈Sn

‖u − χ‖K1
1(T;S) ≤ sup

u∈E1(λ)

‖u − uI ,Tn‖K1
1(T;S)

≤ C sup
u∈E1(λ)

dim(Sn)
−m/3‖u‖Km+1

a+1 (T;S)

≤ c(m, λj ) dim(Sn)
−m/3.

The proof of Theorem 1.1 is now complete.

Next, the proof of Theorem 1.2 follows from Theorem 3.1, Theorem 2.1, the Lax-Milgram
lemma and Céa’s lemma. We note some consequences of this theorem.

Remark 4.2. First, in the case f ∈ Hm−1(T), by the estimate in Eq. (11), we have

‖v − vn‖K1
1(T;S) ≤ C dim(Sn)

−m/3‖f ‖Km−1
a−1 (T;S)

≤ C dim(Sn)
−m/3‖f ‖Hm−1(T),

as long as the index in Theorem 1.2 is chosen such that 0 < a ≤ 1.

As in the classical finite element method, a duality argument yields the following
L2-convergence result.

Theorem 4.3. In addition to the assumptions and notation in Theorem 1.2, assume that
0 < a ≤ 1. Then the following L2 estimate holds

‖v − vn‖L2(T) ≤ C dim(Sn)
(−m−1)/3‖f ‖Hm−1(T).

Proof. We sketch the proof by using the duality argument in weighted Sobolev spaces.
Consider the equation

(L + Hk)w = v − vn in T. (23)

(So we use periodic boundary conditions on P.) The definition of the Galerkin projection vn of v,
Eq. (10), then gives

(v − vn, v − vn) = ((L + Hk)w, v − vn) = ((L + Hk)(w − wn), v − vn),

where wn is the finite element solution of Eq. (23) on Tn. We also have ‖w‖K2
a+1(T;S) ≤

C‖v − vn‖L2(T) by Theorem 2.1, since v − vn ∈ L2(T) ⊂ K0
a−1(T; S). Therefore, applying

Theorem 1.2 to v − vn ∈ L2(T) and m = 1, we have

‖v − vn‖L2(T) ≤ C‖w − wn‖K1
1(T;S)‖v − vn‖K1

1(T;S)/‖v − vn‖L2(T)

≤ C dim(Sn)
−1/3‖v − vn‖K1

1(T;S)

≤ C dim(Sn)
(−m−1)/3‖f ‖Hm−1(T).

This completes the proof.
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A. The Condition Number of the Stiffness Matrix

It is important that the discrete system that we use is well-conditioned for us to be able to realize
the theoretical approximation bounds in practice. Thus, we need additionally to obtain upper and
lower bounds on the eigenvalues of the stiffness matrix that arises in calculation.

Recall the standard nodal basis function φj of the space Sn := S(Tn, m). It consists of functions
that are equal to 1 at one node and equal to zero at all the other nodes. For convenience, we now
instead consider the rescaled bases ϕj := h

−1/2
j φj , where hj is the diameter of the support patch

for φj . Then, we consider the scaled stiffness matrix

An := (
a(ϕi , ϕj )

)
(24)

from our graded finite element discretization (10). In practice, An can be obtained from the
usual stiffness matrix

(
a(φi , φj )

)
by a diagonal preconditioning process. We point out that similar

scaled matrices were considered in [39,40] to study the condition numbers of other Galerkin-based
methods.

For a symmetric matrix A, we shall denote by λmax(A) the largest eigenvalue of A and by
λmin(A) the smallest eigenvalue of A. Thus, the spectrum of A is contained in [λmin(A), λmax(A)],
but is not contained in any smaller interval. We first prove the following estimates needed below.

Lemma 4.4. Let Ti be a tetrahedron in the mesh Tn and let diam(Ti) denote the diameter of Ti .
Then, for any ψn ∈ Sn and ψ ∈ H 1(T), there exists a constant C > 0 independent of n, ψn and
ψ , such that

‖ψn‖K1
1(Ti )

≤ Cdiam(Ti)
1/2‖ψn‖L∞(Ti )

≤ C‖ψn‖L6(Ti )
, (25)

‖ψ‖L6(T) ≤ C‖ψ‖H1(T). (26)

Furthermore, writing ψn = ∑
cjϕj , where ϕj := h

−1/2
j φj are the rescaled basis functions,

we get

C−1
∑

j∈node(Ti )

c2
j ≤ diam(Ti)‖ψn‖2

L∞(Ti )
≤ C

∑
j∈node(Ti )

c2
j . (27)

Proof. We shall show (25) and (27) since (26) is a particular case of the well-known Sobolev
embedding theorem, see [41] for example.

To prove the second estimate in (25), let us first recall that all the tetrahedra Ti belong to a finite
class of shapes (or similarity classes) in our graded triangulation. The second estimate in (25) is
then a direct consequence of the scaling argument in [16, 42]. Recall that this scaling argument,
to be used also below, is to map an arbitrary tetrahedron Ti to a standard tetrahedron Tref and
then to use the equivalence of norms on finite dimensional spaces. The resulting constant C will
then of course depend on the shape regularity of the mesh. We now turn to the proof of the first
estimate in (25).

By the definition of the weighted space (8) and the usual scaling argument, we first have

|ψn|K1
1(Ti )

≤ ‖ψn‖H1(Ti )
≤ C diam(Ti)

1/2‖ψn‖L∞(Ti )
. (28)

We shall consider the two possibilities when one of the vertices of Ti , call it Q, is in S and when
none of the vertices of Ti is in S.
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First, if the vertex Q of Ti is in S, we use a new coordinate system, which is the translation
of the old coordinate system, such that Q is the origin. In the new coordinate system, denote
by Tγ := {γ x, ∀x ∈ Ti} the dilated tetrahedron with the constant γ = diam(Ti)

−1. Therefore,
diam(Tγ ) � 1. For a function v on Ti , we define for x ∈ Tγ , vγ (x) := v(γ −1x). Recall ρ in (7)
is the distance to Q on Ti and therefore ρ(γ x) = γρ(x) for x ∈ Ti . Using the scaling argument
and norm equivalence on finite dimensional spaces, we have

‖ψn‖2
K0

1(Ti )
=

∫
Ti

ρ−2(x)ψ2
n (x)dx =

∫
Tγ

γ 2ρ−2(γ x)[ψγ
n (γ x)]2γ −3d(γ x)

≤ Cγ −1‖ψγ
n ‖2

L∞(Tγ ) ≤ diam(Ti)‖ψn‖2
L∞(Ti )

. (29)

On the other hand, if no vertex of Ti belongs to S, the construction of our graded meshes shows that

‖ρ−1(x)‖L∞(Ti )
≤ C diam(Ti)

−1.

Combining this with the above standard scaling argument, we have

‖ψn‖K0
1(Ti )

≤ C diam(Ti)
−1‖ψn‖L2(Ti )

≤ C diam(Ti)
1/2‖ψn‖L∞(Ti )

. (30)

Combining Eqs. (28), (29), and (30) completes the proof for the first estimate in (25) since the
diameters diam(Ti) are bounded.

For the estimate in (27), let T̂ be the usual reference tetrahedron and Fi be the affine mapping
such that Fi(Ti) = T̂ . For any function v on Ti , we denote by v̂ := v ◦ F −1

i the resulting func-
tion on T̂ . Let us also denote by ψn = ∑

ciϕi = ∑
c̄iφi . Based on the definition of the basis

function ϕi ,

C−1 diam(Ti)
1/2c̄i ≤ ci ≤ C diam(Ti)

1/2c̄i . (31)

Then, both ‖ψ̂n‖L∞ and (
∑

j∈node(T̂ ) c̄
2
j )

1/2 are norms for the finite element function ψ̂n|T̂ , where

the summation on c̄j is for all the nodes in T̂ . Based on equivalence of all norms for a finite
dimensional space, we have

C−1

⎛⎝ ∑
j∈node(T̂ )

c̄2
j

⎞⎠1/2

≤ ‖ψ̂n‖L∞(T̂ ) ≤ C

⎛⎝ ∑
j∈node(T̂ )

c̄2
j

⎞⎠1/2

.

This, together with (31), implies

C−1
∑

j∈node(Ti )

c2
j ≤ diam(Ti)‖ψn‖2

L∞(Ti )
≤ C

∑
j∈node(Ti )

c2
j ,

which completes the proof.

Therefore, we have the following estimates on the eigenvalues of the stiffness matrix.

Lemma 4.5. Let An be the stiffness matrix from the finite element discretization corresponding
to the rescaled nodal basis ϕj of the space Sn := S(Tn, m) in Eq. (24). Then,

λmax(An) ≤ M ,

where the constant M is independent of the mesh level n.
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Proof. Let us fix the mesh level n. All the constants below will be independent of n. Let {Ti}
be the tetrahedra forming our mesh Tn. Let ψn ∈ Sn be arbitrary and write ψn = ∑

j cjϕj and
V := (cj ). By (25) and (27), we have

VT AnV = a(ψn, ψn) ≤ C‖ψn‖2
K1

1(T)

= C
∑

i

‖ψn‖2
K1

1(Ti )
≤ C

∑
i

diam(Ti)‖ψn‖2
L∞(Ti )

≤ C
∑

j

c2
j ≤ CVT V.

This completes the proof.

Lemma 4.6. We use the same notation as in Lemma 4.5. Then smallest eigenvalue λmin(An) of
the stiffness matrix An satisfies

λmin(An) ≥ C dim(Sn)
−2/3.

Proof. For any ψn ∈ Sn, we use the notation ψn = ∑
j cjϕj , V := (cj ), and diam(Ti)

denotes the diameter of Ti , as in the proof of the previous lemma. In view of (27), the inverse
estimate (25), Hölder’s inequality, and the Sobolev embedding estimate (26), we then have

VT V =
∑

j

c2
j ≤ C

∑
i

diam(Ti)‖ψn‖2
L∞(Ti )

≤ C
∑

i

‖ψn‖2
L6(Ti )

≤ C

(∑
i

1

) 2
3
(∑

i

‖ψn‖6
L6(Ti )

) 1
3

≤ C dim(Sn)
2
3 ‖ψn‖2

L6(T)

≤ C dim(Sn)
2
3 ‖ψn‖2

H1(T)
≤ C dim(Sn)

2
3 VT AnV.

Then, we have the estimate on the condition number.

Theorem 4.7. Let An = (a(ϕi , ϕj )) be the stiffness matrix. Then the condition number κ(An)

of An satisfies

κ(An) ≤ C dim(Sn)
2/3.

The constant C depends on the finite element space, but not on n.

Proof. Using κ(An) = λmax(An)/λmin(An), we obtain the estimate by Lemmas 4.5
and 4.6.

Remark 4.8. Similar estimates on condition numbers have been derived by Bank and Scott [39].
We also mention that Apel and Heinrich [43] studied the condition number from 3D-graded meshes
for edge singularities. They also recommended the scaling of basis functions to precondition the
matrix when the solution possesses severe edge singularities.
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FIG. 2. The initial mesh on the cube P = [−1, 1]3 (left); the mesh after one k refinement for the origin,
k = 0.2 (right). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

V. NUMERICAL TESTS OF THE FINITE ELEMENT METHOD

We now present the numerical tests for the finite element solution defined in (10) approximating
possibly singular solutions to Eq. (9).

To be more precise, suppose that our periodicity lattice is 2Z3 and we choose our fundamental
domain P = [−1, 1]3 to be a cube of side length 2. We impose periodic boundary condition on
the following model problem

(L + H0)v := (−� + δψr−2 + L)v = 1 in , (32)

where r = |x|, δ > −1/4, L ≥ 0, and the cut-off function ψ := er2
c /(r4−r2

c )+1 for r2 ≤ rc and
ψ = 0 for r2 > rc; in the tests, we chose rc = 0.25. Note that if δ > 0, it is clear that the operator
L+H0 is positive on K1

1 (see Theorem 2.1). We use the continuous piecewise linear finite element
method on triangulations graded toward the origin with grading ratio k > 0 (Recall that k = 0.5
corresponds to the quasi-uniform refinement.)

To enforce the periodic boundary condition for the finite element functions, we use meshes
where all the boundary nodal points are symmetric about the mid-plane between opposite faces
of the cube. Any set of the symmetric nodes will be associated to the same shape function in the
discretization. For example, nodes on edges of the cube generally have three mirror images over
two mid-planes (two direct mirror images and the third is symmetric over the line of intersec-
tion of these two mid-planes), and these four points are associated to the same shape function.
Consequently, the eight vertices of the cube are associated to the same shape function through
symmetry. See Fig. 2 for example. In particular, a mesh on T identifies with a mesh with suitable
properties on P.

Our first tests are for Eq. (32) with δ = 4.0 and L = 0. According to Theorem 1.2 in the case
m = 1, the optimal rate of convergence for the finite element solution, dim(Sn)

−1/3, should be
obtained on triangulations with any k ≤ 0.5, since η = √

1/4 + 4 > 1. The convergence rates
e associated to triangulations with different values of k are listed in Table I. Starting from an

TABLE I. Convergence rates e of finite element solutions solving Eq. (32) with δ = 4.0 and L = 0 on
different graded tetrahedra.

j\e k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5

2 0.42 0.44 0.56 0.33 −0.20
3 0.48 0.68 0.75 0.79 0.70
4 0.78 0.81 0.86 0.88 0.85
5 0.91 0.92 0.94 0.95 0.93
6 0.97 0.97 0.98 0.99 0.98
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TABLE II. Convergence rates e of finite element solutions solving Eq. (32) with δ = 0.6 and L = 0 on
different graded tetrahedra.

j\e k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5

2 0.20 0.30 0.33 0.11 −0.03
3 0.54 0.66 0.69 0.61 0.39
4 0.74 0.81 0.83 0.77 0.60
5 0.88 0.91 0.92 0.87 0.72
6 0.95 0.97 0.98 0.92 0.79

initial triangulation, we compute the rates based on the comparison of the numerical errors on
triangulations with consecutive k-refinements,

e := log2

|vj−1 − vj |K1
1

|vj − vj+1|K1
1

, (33)

where vj is the finite element solution on the mesh after j k-refinements. Recall the dimension
of the finite element space grows by a factor of 8 with one k-refinement. Thus, by Theorem 1.2,
for a sequence of optimal meshes, the error |v − vj |K1

1
is reduced by a factor of 2 for linear finite

element approximations with each k-refinement.Thus, e → 1 implies that the optimal rate of
convergence in Theorem 1.2 is achieved.

Table I shows that the convergence rates e approach 1 for all values of the grading parameter k,
where j is the level of refinements. This is in agreement with our theory that the optimal rates of
convergence are obtained for any triangulations with k ≤ 0.5. Note that k = 0.5 corresponds to a
standard ungraded mesh, and the result for this value of k is the standard convergence result for such
meshes. This result can be recovered in this example as the singularity in the solution is not strong
enough to be detectable for linear finite elements. That is, the solution has sufficient regularity in
terms of regular Sobolev spaces for the standard mesh result to hold for linear elements. However,
a graded mesh would be necessary to obtain the optimal convergence rate for elements of higher
degree.

In the second test, we implemented our method solving Eq. (32) with δ = 0.6, L = 0 and sum-
marize the results in Table II. Based on the upper bound η = √

1/4 + 0.6 given in Theorem 1.2,
we expect the optimal rate of convergence for the numerical solution as long as the grading para-
meter k < 2−1/η ≈ 0.47. The convergence rates in Table II tend to 1 when k ≤ 0.4, which implies
the optimality of our finite element approximation on these meshes. However, when k = 0.5, the
convergence rate is far less than 1 and there is a large gap between the rates corresponding to
k = 0.4 and k = 0.5. This further confirms our theory that the upper bound of the suitable range
of k for an optimal finite element approximation lies in (0.4, 0.5).

The third tests are for negative potentials in Eq. (32), where we set δ = −0.1 and L = 20
to satisfy the positivity requirement in Theorem 2.1. Our theoretical results indicate that the
singularity in the solution due to the singular potential is stronger in this case and the optimal
rate can be achieved only if the grading parameter k < 2−1/

√
1/4−0.1 ≈ 0.167. Because of the

limitation of the computation power, we only display the convergence results up to the sev-
enth refinement for various graded parameters k in Table III. However, we still see the trend
that appropriate gradings improve the convergence rate as predicted in Theorem 1.2. When k is
close to the optimal value 0.167 (i.e., k = 0.1 and 0.2), we have remarkable improvements. In
particular, for k = 0.1, based on Table III, we expect that the optimal rate occurs with further
refinements.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



ANALYSIS OF SCHRÖDINGER OPERATORS 1149

TABLE III. Convergence rates e of finite element solutions solving Eq. (32) with δ = −0.1 and L = 20
on different graded tetrahedra.

j\e k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5

2 −0.10 −0.05 −0.09 −0.16 −0.03
3 0.32 0.37 0.30 0.19 0.07
4 0.51 0.52 0.44 0.32 0.18
5 0.67 0.64 0.53 0.40 0.26
6 0.80 0.72 0.59 0.45 0.32

We have also implemented the method on graded meshes for the eigenvalue problem associated
with Eq. (32), especially on the computation of the first eigenvalues. Namely,

H0u := (−� + δψr−2)u = λ1u

on the cube P = [−1, 1]3, where λ1 is the first eigenvalue of the operator. Depending on the choice
of δ, the convergence rates for the numerical eigenvalues on graded meshes are roughly twice
the rates for the numerical solutions of Eq. (32) (see Tables I–III), and present similar trends for
different gradings.

All our numerical tests (Tables I–III, and corresponding eigenvalue computations) verify Theo-
rem 1.1 by comparing the rates of convergence for different singular potentials on different graded
triangulations for the model operator in (32). The theoretical upper bounds 2−1/η of the optimal
range for the grading parameter k are also demonstrated in these numerical results. In these tests,
the initial triangulation of the cube consists of 12 tetrahedra and we consecutively refine the mesh
using the k-refinements up to level 7 that includes 12 × 87 ≈ 2.5 × 107 tetrahedra and roughly
4.2 million unknowns. Numerical experiments show that the condition numbers of our discrete
systems grow by a factor of 4 for consecutive refinements, regardless of the value of k, which
resembles the estimates given in [39] for the Laplace operator. However, the values of k affect the
magnitude of the condition numbers. In general, smaller k leads to bad shapes for the tetrahedra
and therefore results in larger condition numbers. The preconditioned conjugate gradient method
(using the inverse of the diagonal entries as the preconditioner) was used as the numerical solver
for the discrete systems.
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useful discussions. This project was started while Hunsicker and Nistor were visiting the Max
Planck Institute for Mathematics in Bonn, Germany, and the authors are grateful for its support.
The authors also thank Serge Nicaise for pointing out an imprecision in our previous statement
of our theorem on eigenvalue approximation. The authors also thank two anonymous referees for
their careful reading of the paper and their useful comments.
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