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Consider the Poisson equation with the Dirichlet boundary condition on a bounded convex
polygonal domain Ω ⊂ R2. We investigate the finite element approximation of singular
solutions that are due to the non-smoothness of the domain in theW 1

p norm (1 < p ≤ ∞).
In particular, with analysis in weighted Sobolev spaces and weighted Hölder spaces, we
provide regularity requirements on the given data and specific parameter-selection criteria
for graded meshes, such that the resulting numerical approximation achieves the optimal
convergence rate in W 1

p . Sample results from various numerical tests are provided to
confirm the theory.
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1. Introduction

Let Ω ⊂ R2 be a bounded convex polygonal domain. We consider the Poisson equation with the Dirichlet boundary
condition

−1u = f inΩ, u = 0 on ∂Ω. (1)

Given a function f in H−1 (the dual space of H1
0 ), Eq. (1) has a unique H1 solution u. It is well known that, due to

the non-smoothness of the domain, the solution u may be singular even if the data function f is smooth. This lack of
regularity can severely decrease the efficacy of the numerical approximation, and has been one of the major concerns in
the computational community. Using continuous piecewise polynomials, the finite element solution to (1) is defined by a
variational formulation and has awell-developed optimal convergence theory in the naturally-inducedH1 (energy) norm for
smooth solutions [1,2]. In the presence of singular solutions,mesh grading techniques arewidely used, such that the optimal
H1 energy-norm convergence rate can be recovered in the finite elementmethod (see [3–9] and references therein). Beyond
the energy norm, it is of both theoretical and practical importance [10–13] to investigate finite element approximations of
singular solutions in theW 1

p norm.
The W 1

p analysis has a long history and early results can be traced back to 1970’s [14–20]. In contrast to the case in the
H1 norm, the numerical solution does not inherit the stability in the Banach space W 1

p (p ≠ 2) from the variational for-
mulation. Thus, extensive effort has been made on the stability analysis for the finite element solution in theW 1

p norm. The
analysis in these non-energy norms in general is technical, challenging, and requires additional geometric constraints on the
mesh. In particular, the W 1

p stability on quasi-uniform meshes can be found in [17]. These estimates in turn imply that the
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finite element approximation achieves the optimal convergence rate inW 1
p when the solution is sufficiently smooth. Allow-

ing mesh grading, error estimates in other non-energy norms are available in the literature. For example, see [21,22,18,19]
for L∞ estimates on graded meshes for different elliptic problems. Recently, the W 1

p stability of the finite element solution
to Eq. (1) has been established on a class of graded meshes for possible singular solutions [11,13]. In spite of these develop-
ments, some critical questions remain open, including: [I] the regularity requirement on the data function f (f is assumed to
be ‘‘sufficiently smooth’’ in the existing stability analysis in order for the solution to have the desired regularity.More sophis-
ticated regularity analysis is needed for broader applications); [II] the specific construction of graded meshes for obtaining
optimal numerical approximations inW 1

p norms.
This paper is aiming at addressing these issues. Namely, we shall present regularity requirements on the given data f and

specific parameter-selection criteria for gradedmeshes, such that the resulting numerical approximation to Eq. (1) achieves
the optimal convergence rate inW 1

p norms for 1 < p ≤ ∞, even when the solution is singular. The novelty of our approach
lies in rigorous analysis in a family of weighted spaces: the weighted Sobolev space K

m,p
µ⃗

(Definition 2.1) and the weighted
Hölder spaceHm,σ

µ⃗
(Definition 2.3). Using these spaces, we are able to describe the full-regularity dependence of the solution

on the data f (Propositions 2.6 and 2.7). Then, the finite element error estimation is built upon these weighted regularity
results and upon the intrinsic scaling property in the weighted space K

m,p
µ⃗

.
To be more precise, we give a simple and explicit construction for a sequence of graded meshes Tn. This construction is

based on successive refinements of triangles according to a set of grading parameters. Denote by Sn ⊂ H1
0 the finite element

space associated with the mesh Tn. Let un ∈ Sn be the finite element solution. Then, we give smoothness requirements on f
and the range of grading parameters (Theorem 4.6), such that the following error estimate holds on Tn:

∥u − un∥W1
p (Ω)

≤ C dim(Sn)−k/2, p ∈ (1,∞], (2)

where dim(Sn) and k ≥ 1 are the dimension and the degree of the finite element space Sn, respectively, and C > 0 is
independent of themesh level. Namely, we are able to recover the approximation rate that is expected for smooth solutions.
Note that we restrict our analysis on convex domains, because the stability of the Ritz projection [11,13] is available only
on such domains for the time being. However, it is possible to extend our approach to non-convex domains under the
condition that the corresponding stability result holds. Nevertheless, since u ∈ Wm

p does not always hold for any m and p
even on convex domains (Proposition 2.4), mesh grading is necessary to improve the finite element approximation to such
singular solutions.

The rest of the paper is organized as follows. In Section 2, we introduce the weighted spaces K
m,p
µ⃗

and Hm,σ
µ⃗

. In addition,
we give full-regularity estimates for the solution of Eq. (1) in these spaces. In Section 3, we first define the graded meshes
and the associated finite element methods. Then, we obtain a stability result that we shall need in the error analysis. In
Section 4, with a detailed interpolation error estimate in the weighted space, we obtain our main result (Theorem 4.6) on
the optimal finite element methods in theW 1

p norm. In Section 5, we implement the proposed finite element algorithm for
a model problem on various polygonal domains. We report the convergence rates of the linear finite element solution in
theW 1

p norm for different values of p. These numerical results verify the theoretical prediction and validate our parameter-
selection criteria for graded meshes. In Section 6, we conclude the paper with some remarks.

Throughout the paper, by A ≃ B, we mean that there are constants C1 > 0 and C2 > 0, such that C1A ≤ B ≤ C2A. The
generic constant C > 0 in our analysis belowmay be different at different occurrences. It will depend on the computational
domain, but not on the functions involved in the estimates or the mesh level in the finite element algorithms.

2. Weighted spaces and regularity

In this section, we introduce function spaces for the analysis of Eq. (1); and establish regularity results for the solution in
suitable weighted spaces.

2.1. Function spaces

For any ω ⊂ Ω , we use the standard notation Wm
p (ω) for the Sobolev space. Namely, for m ≥ 0, the semi-norms and

norms are

|v|Wm
p (ω) :=


|α|=m


ω

|∂αv|pdx

1/p

, ∥v∥Wm
p (ω) :=


j≤m

|v|
p

W j
p(ω)

1/p

, for 1 < p < ∞;

|v|Wm
∞(ω)

:= max
|α|=m


ess sup{|∂αv(x)|, x ∈ ω}


, ∥v∥Wm

∞(ω)
:= max

j≤m


|v|W j

∞(ω)


,

where α = (α1, α2) ∈ Z2
≥0 is the multi-index and |α| := α1 + α2. In addition, given σ ∈ (0, 1), recall that the Hölder space

Cm,σ (ω) has the following norm

∥v∥Cm,σ (ω) := sup
x∈ω


|α|≤m

|∂αv| +


|α|=m

sup
x,y∈ω

|∂αv(x)− ∂αv(y)|
|x − y|σ

.
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The regularity of the solution to Eq. (1) depends on the given function f and on the geometry of the domain Ω . On
a polygonal domain, the solution may not possess high-order derivatives in the Sobolev spaces, even when f is smooth.
We now introduce a class of weighted Sobolev spaces that shall give rise to sharp regularity descriptions for the singular
solutions.

Recall the polygonal domainΩ . Let vi, 1 ≤ i ≤ l, be the ith vertex ofΩ and V := {vi}i=1,...,l be the vertex set. Denote by
ri(x) be the distance function from x ∈ Ω to vi. Let µ⃗ := (µ1, µ2, . . . , µl) be an l-dimensional vector. For a constant c , we
denote c ± µ⃗ := (c ± µ1, c ± µ2, . . . , c ± µl). Then, we define the function

ρ(x) :=


1≤i≤l

ri(x),

and its vector exponents

ρc±µ⃗(x) :=


1≤i≤l

ri(x)c±µi = ρc

1≤i≤l

ri(x)±µi .

Thus, we define the following weighted Sobolev space.

Definition 2.1 (Weighted Sobolev Spaces). For ω ⊂ Ω , the weighted Sobolev space is

K
m,p
µ⃗
(ω) := {v, ρ |α|−µ⃗∂αv ∈ Lp(ω) for all |α| ≤ m}, 1 < p ≤ ∞,

with the semi-norms and norms

|v|Km,p
µ⃗

(ω) :=


|α|=m

∥ρm−µ⃗∂αv∥
p
Lp(ω)

1/p

, ∥v∥2
K

m,p
µ⃗

(ω)
:=


|α|≤m

|v|
p

K
|α|,p
µ⃗

(ω)

1/p

, for 1 < p < ∞;

|v|Km,∞
µ⃗

(ω) := max
|α|=m


ess sup{|ρm−µ⃗∂αv(x)|, x ∈ ω}


, ∥v∥K

m,∞
µ⃗

(Ω) := max
|α|≤m


|v|

K
|α|,∞

µ⃗
(ω)


.

Remark 2.2. These weighted spaces are the by-products of the Mellin transform [23,24]. A special case of the space, Km,2
µ⃗

,
is frequently used in the regularity analysis for elliptic equations with corner singularities. See [25–28,7] and references
therein. We shall use the generalized version K

m,p
µ⃗

(1 < p ≤ ∞) to handle the singular solution for analysis in the W 1
p

space. Note that the space K
m,p
µ⃗

has the following notable local property. Let ωi ⊂ Ω be a region within the neighborhood
of the vertex vi, which does not include other vertices. Then,

|v|Km,p
µ⃗

(ωi)
≃


|α|=m

∥rm−µi
i ∂αv∥

p
Lp(ωi)

1/p

, 1 < p < ∞, |v|Km,∞
µ⃗

(ωi)
≃


|α|=m

∥rm−µi
i ∂αv∥L∞(ωi). (3)

However, on a region ω ⊂ Ω away from the vertex set V , the weight function ρ is bounded both above and below from
zero. Therefore, the weighted space K

m,p
µ⃗

and the Sobolev spaceWm
p are equivalent. Namely, for 1 < p ≤ ∞,

∥v∥K
m,p
µ⃗

(ω) ≃ ∥v∥Wm
p (ω). (4)

These local properties make it possible in K
m,p
µ⃗

to capture the singular behavior of the solution due to the non-smoothness
of the domain.

In addition to the space K
m,p
µ⃗

, we shall need the following weighted Hölder space [23] to obtain the regularity estimate
for the case p = ∞.

Definition 2.3 (Weighted Hölder Spaces). Let σ ∈ (0, 1). Then, for ω ⊂ Ω , the weighted Hölder space is

Hm,σ
µ⃗
(ω) :=


v, sup

x∈ω


|α|≤m

ρ|α|−σ−µ⃗
|∂αv| +


|α|=m

sup
x,y∈ω

|x − y|−σ |ρm−µ⃗∂αv(x)− ρm−µ⃗∂αv(y)| < ∞


,

with the norm

∥v∥H
m,σ
µ⃗

(ω) := sup
x∈ω


|α|≤m

ρ|α|−σ−µ⃗
|∂αv| +


|α|=m

sup
x,y∈ω

|ρm−µ⃗∂αv(x)− ρm−µ⃗∂αv(y)|
|x − y|σ

.
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2.2. Regularity estimates

Let H1
0 (Ω) ⊂ H1(Ω) := W 1

2 (Ω) be the subspace consisting of functions with zero trace on ∂Ω . The variational solution
u ∈ H1

0 (Ω) of Eq. (1) is

a(u, v) =


Ω

∇u · ∇vdx =


Ω

f vdx = (f , v), ∀v ∈ H1
0 (Ω). (5)

By the Poincaré inequality, for any f ∈ H−1(Ω), the solution u ∈ H1
0 (Ω) is well defined. However, on polygonal domains, it

is known that the solution is not always smoother than f in the Sobolev spaces (Section 2.7 in [29]):

Proposition 2.4. Let χ be the largest interior angle of Ω . The Laplace operator

−∆ : Wm+2
p (Ω) ∩ H1

0 (Ω) → Wm
p (Ω), m ≥ 0,

defines an isomorphism, provided that the parameter p satisfies 1 < p < ηm, whereηm = ∞ for π/χ ≥ m + 2;

ηm =
2

m + 2 − π/χ
for π/χ < m + 2.

Remark 2.5. The lack of regularity in Wm
p for large values of m and p is due to the fact that near a vertex vi ∈ V of the

domain, the solution has the following expansion

u = uS + uR =


s,t

cs,tψr s lnt r + uR,

where uR ∈ Wm+2
p (Ω) is the smoother component,ψ is a smooth function, and r is the distance to vi. The constants cs,t ∈ R

and s, t ∈ R+ ∪ {0} depend on the local geometry of the vertex. Therefore, the singular component uS =


s,t cs,tψr s lnt r
may not be inWm+2

p (Ω), regardless of the smoothness of right hand side f .

By contrast, we have the following full-regularity estimates in weighted spaces for solutions with such corner
singularities.

Proposition 2.6. Let χi, 1 ≤ i ≤ l, be the interior angle associated with the ith vertex vi ∈ V and a⃗ := (a1, a2, . . . , al). For
1 < p < ∞, define ηi := π/χi − 1 + 2/p. Then, for any 0 ≤ ai < ηi, if f ∈ K0,2

−1⃗
(Ω) ∩ K

m,p
a⃗−1⃗
(Ω), m ≥ 0, the variational

solution of Eq. (1) satisfies

∥u∥
K

m+2,p
a⃗+1⃗

(Ω)
≤ C∥f ∥K

m,p
a⃗−1⃗

(Ω),

where 1⃗ = (1, 1, . . . , 1) is an l-dimensional constant vector.

Proof. Based on Lemma 3.5 in [7], H1
0 (Ω) and K1,2

1 (Ω) ∩ {v|∂Ω = 0} are the same space. Thus, for f ∈ K0,2
−1 (Ω), by the

regularity estimate in weighted spaces (Theorem 3.3 in [7]), we first have u ∈ K2,2
1 (Ω).

Then, using a partition of unity, we can apply the localization argument for the solution in each neighborhood ωi of the
vertex vi and in an interior subdomain ω away from the vertices. Near a vertex vi, the eigenvalues of the operator pencil
associated with the Laplace operator in Eq. (1) are ±kπ/χi, k ∈ Z+ [5,30]. Note that the space Vm,p

β in [30] is the same
as K

m,p
µ⃗

when m − β = µi. Therefore, in the neighborhood ωi of the vertex vi, by Corollary 1.2.7 in [30] and the norm
equivalence (3), we have

∥u∥
K

m+2,p
a⃗+1⃗

(ωi)
≤ C∥f ∥K

m,p
a⃗−1⃗

(ωi)

as long as |ai + 1 − 2/p| < π/χi. In the interior subdomain ω, we can use Theorem 9.19 in [31] and the norm equivalence
(4) to obtain

∥u∥
K

m+2,p
a⃗+1⃗

(ω)
≃ ∥u∥Wm+2

p (ω)
≤ C∥f ∥Wm

p (ω) ≃ ∥f ∥K
m,p
a⃗−1⃗

(ω).

Hence, combining all the local estimates, we have for 1 < p < ∞,

∥u∥
K

m+2,p
a⃗+1⃗

(Ω)
≤ C∥f ∥K

m,p
a⃗−1⃗

(Ω), for −
π

χi
− 1 +

2
p
< ai <

π

χi
− 1 +

2
p
.

SinceΩ is convex, χi < π , and therefore−
π
χi

−1+
2
p < 0. Thus, the estimate above holds for 0 ≤ ai < ηi, which completes

the proof. �
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Fig. 1. Graded triangulations andmesh layers (left–right): an initial trianglewithA ∈ V and B, C ∉ V; one graded refinement toA, κA =
|AD|

|AB| =
|AE|

|AC |
=

|DE|

|BC |
;

three mesh layers resulted by two consecutive graded refinements toward A.

In order to obtain the regularity estimate for p = ∞, we use the weighted Hölder space in Definition 2.3. The following
result can be found in Section 8.7.1 of [23], in which the space Nm,σ

β⃗
is the same as Hm,σ

µ⃗
for µi = m − βi.

Proposition 2.7. Let χi, 1 ≤ i ≤ l, be the interior angle associated with the ith vertex vi and a⃗ := (a1, a2, . . . , al). Let
M := min1≤i≤l(π/χi − 1). Note that M > 0 on the convex polygonal domain. For any σ ∈ (0,min(1,M)), define
ηi := π/χi − 1 − σ . Then, for 0 ≤ ai < ηi, if f ∈ Hm,σ

a⃗−1⃗
(Ω), m ≥ 0, the variational solution of Eq. (1) satisfies

∥u∥
H

m+2,σ
a⃗+1⃗

(Ω)
≤ C∥f ∥H

m,σ
a⃗−1⃗

(Ω).

Note that by Definitions 2.1 and 2.3, for any v ∈ Hm,σ
µ⃗
(Ω), we have

∥v∥K
m,∞
µ⃗

(Ω) ≤ C∥v∥H
m,σ
µ⃗

(Ω). (6)

Therefore, by (6) and Proposition 2.7, we obtain the following estimate in Km,∞
µ⃗

(Ω).

Corollary 2.8. Recall the parameters χi, σ , ηi, and ai from Proposition 2.7. Then, for f ∈ Hm,σ
a⃗−1⃗
(Ω), m ≥ 0, the variational

solution of Eq. (1) satisfies

∥u∥
K

m+2,∞
a⃗+1⃗

(Ω)
≤ C∥f ∥H

m,σ
a⃗−1⃗

(Ω).

Remark 2.9. The regularity estimates in Proposition 2.6 and Corollary 2.8 imply high-order smoothness of the solution u in
weighted Sobolev spaces K

m,p
µ⃗
(Ω), provided that the given function f is reasonably smooth. For example, for 0 ≤ ai ≤ 1,

one can seeWm
p (Ω) ⊂ K

m,p
a⃗−1⃗
(Ω) for 1 < p < ∞; and for 0 ≤ ai ≤ 1 − σ , we have Cm,σ (Ω) ⊂ Hm,σ

a⃗−1⃗
(Ω).

3. Finite element methods

In this section, we describe the construction of a class of graded meshes and the associated finite element methods. In
addition, we discuss the geometric properties of the mesh and the stability properties of the numerical algorithm, both of
which are critical for our further analysis.

Definition 3.1 (GradedMeshes). Let T be a triangulation ofΩ whose vertices includeV , such that no triangle in T hasmore
than one of its vertices in V . Define the vector κ⃗ = (κ1, κ2, . . . , κl), for κi ∈ (0, 1/2]. Then, a κ⃗ refinement of T , denoted by
κ⃗(T ), is obtained by dividing each edge AB of T in two parts as follows:

• If neither A nor B is in V , then we divide AB into two equal parts.
• Otherwise, if A = vi ∈ V , we divide AB into AD and DB such that |AD| = κi|AB|.

This will divide each triangle of T into four triangles (Fig. 1). Given an initial triangulation T0, the associated family of graded
triangulations {Tj : j ≥ 0} is defined recursively, Tj+1 = κ⃗(Tj).

Let Sn ⊂ H1
0 (Ω), n ≥ 0, be the Lagrange finite element space of degree k ≥ 1 associated with the graded triangulation

Tn. Namely,

Sn = {v ∈ C(Ω), v|T ∈ Pk, for any triangle T ∈ Tn},

where Pk is the space of polynomials of degree ≤ k. Then, the finite element solution un ∈ Sn for Eq. (1) satisfies

a(un, vn) = (f , vn), ∀vn ∈ Sn, (7)

where a(·, ·) is the bilinear form defined in (5).
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Remark 3.2. Note that successive graded refinements (Definition 3.1) for a triangle T ∈ T0 generate child triangles within
at most four similarity classes. Therefore, the triangles in Tn is within at most 4N0 similarity classes, where N0 is the number
of initial triangles in T0. Thus, Tn consists of shape-regular triangles.

Remark 3.3. In the construction of gradedmeshes (Definition 3.1), the value of κi controls themesh density near the vertex
vi. When κi = 1/2, the successive refinements lead to a quasi-uniform mesh in the neighborhood of vi (Fig. 2). In the
presence of singular solutions, this graded mesh, when an appropriate grading parameter κ⃗ is chosen, has been successful
in recovering the optimal rate of convergence of the finite element solution in the energy norm [5,7]. The novelty of our
results is the development of explicit graded meshes, on which the optimal convergence rate can be achieved for the finite
element solution in theW 1

p norm.

We now derive the following stability result for the finite element solution on these graded meshes.

Theorem 3.4. Recall the graded mesh Tn from Definition 3.1 and the finite element solution un from (7). Let f be given as
in Proposition 2.6 for 1 < p < ∞ and be given as in Proposition 2.7 for p = ∞. Then, for n sufficiently large and m ≥ 0,
we have

∥un∥W1
p (Ω)

≤ C∥u∥W1
p (Ω)

≤ C∥f ∥K
m,p
a⃗−1⃗

(Ω), 1 < p < ∞ (8)

and

∥un∥W1
∞(Ω)

≤ C∥u∥W1
∞(Ω)

≤ C∥f ∥H
m,σ
a⃗−1⃗

(Ω), (9)

where C is independent of the mesh level n.

Proof. Under the assumption that the solution u ∈ W 1
p (Ω) with 1 < p ≤ ∞, the stability of the Ritz projection on graded

meshes is proved (see [11] and Theorem 5.5 in [13]) for n sufficiently large

∥un∥W1
p (Ω)

≤ C∥u∥W1
p (Ω)

.

Therefore, we only need to show the second inequality in (8) and (9). Namely, u ∈ W 1
p (Ω) provided that the function f is as

described.
Recall that in both Propositions 2.6 and 2.7, ai ≥ 0 and m ≥ 0. Then, for 1 < p < ∞, by the definition of the weighted

space and Proposition 2.6, we have

∥u∥W1
p (Ω)

≤ C∥u∥
K

1,p
a⃗+1⃗

(Ω)
≤ C∥f ∥K

m,p
a⃗−1⃗

(Ω).

For p = ∞, by the definition of the weighted space and Corollary 2.8, we have

∥u∥W1
∞(Ω)

≤ C∥u∥
K

1,∞
a⃗+1⃗

(Ω)
≤ C∥f ∥H

m,σ
a⃗−1⃗

(Ω).

Hence, the proof is completed. �

Corollary 3.5. For 1 < p ≤ ∞ and n sufficiently large, let f be given as in Theorem 3.4. Then, we have

∥u − un∥W1
p (Ω)

≤ C inf
v∈Sn

∥u − v∥W1
p (Ω)

. (10)

Proof. By Theorem 3.4, for the given f , u ∈ W 1
p (Ω) for 1 < p ≤ ∞. Therefore, for any v ∈ Sn, we have

∥u − un∥W1
p (Ω)

≤ ∥u − v∥W1
p (Ω)

+ ∥v − un∥W1
p (Ω)

≤ C∥u − v∥W1
p (Ω)

.

This completes the proof. �

Remark 3.6. Corollary 3.5 generalizes the Céa Theorem in the H1 error analysis. Namely, the finite element solution is
comparable to the best approximation in the W 1

p norm on the graded mesh. Based on Theorem 3.4, the constant C in (10)
is independent of the mesh level n and depends on the grading parameter κ⃗ . We, however, note that C is bounded for a
sequence of gradedmeshes Tj, j ≤ n, once κ⃗ is fixed. These results allow us to focus on interpolation error estimates in these
non-energy norms, and in turn to improve the accuracy of the numerical solution on graded meshes (see Section 4).

A close examination of the graded mesh leads to the following definition of mesh layers that are associated with graded
refinements toward the vertices.
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Fig. 2. Three consecutive graded refinements of a polygonal domain with κ⃗ = (0.2, 0.5, 0.5, 0.5) (left–right): T0 , the initial triangulation; T1 , the mesh
after one refinement; T2 , the mesh after two refinements.

Definition 3.7 (Mesh Layers). Recall from Definition 3.1 that the triangulation Tj, 0 ≤ j ≤ n, is obtained after j successive
graded refinements of T0 with parameter κ⃗ . Let Ti,j ⊂ Tj, 1 ≤ i ≤ l, be the union of (closed) triangles in Tj having vi ∈ V
as a vertex. Namely, Ti,j is the immediate neighborhood of vi in Tj. Define the regions near vi, resulting from the graded
refinement

Li,j = Ti,j \ Ti,j+1, for 0 ≤ j < n, and Li,n = Ti,n.

Then, we denote the jth layer Lj, 0 ≤ j ≤ n, of the mesh Tn by

Lj = ∪1≤i≤l Li,j.

See Fig. 1 for an illustration of mesh layers.

Remark 3.8. LetΩ0 := Ω \ ∪i Ti,0. It is apparent thatΩ = Ω0 ∪ (∪0≤j≤n Lj). Based on Definition 3.1, on Tn, the diameter of
the triangles inΩ0 is

h ≃ 2−n
; (11)

the mesh size in each layer Li,j is

hi,j ≃ κ
j
i2

j−n
; (12)

and the dimension of the finite element space, determined by the number of triangles in Tn is

dim(Sn) ≃ 4n. (13)

In addition, since Li,j is in the neighborhood of vi, by Definitions 2.1 and 3.1, the weight function ρ and the distance function
ri satisfy

ρ|Li,j ≃ ri|Li,j ≃ κ
j
i , for 0 ≤ j < n; and ρ|Li,n ≃ ri|Li,n ≤ Cκn

i . (14)

4. Error analysis and optimal meshes

In this section, we first investigate the interpolation error in the W 1
p norm on graded meshes. Then, we summarize the

main results in Theorem 4.6, where we provide the regularity requirement for the function f and the selection criteria for
the grading parameter κ⃗ , such that the associated finite element method approximates the solution u of Eq. (1) with the
optimal rate in theW 1

p norm.
Recall that k ≥ 1 is the degree of the Lagrange finite element space Sn associatedwith the triangulation Tn (Definition 3.1)

with a grading parameter κ⃗ . In view of (10), we shall obtain the finite element approximation error by analyzing the
interpolation error.

Let f be a function, such that f ∈ K0,2
−1⃗
(Ω)∩K

k−1,p
a⃗−1⃗

(Ω) if 1 < p < ∞ and f ∈ Hk−1,σ
a⃗−1⃗

(Ω) if p = ∞. Thus, for the values
of a⃗ and σ given in Propositions 2.6 and 2.7, the solution of Eq. (1) satisfies

u ∈ K
k+1,p
a⃗+1⃗

(Ω), 1 < p ≤ ∞. (15)

Thus, by the equivalence of norms (4) and the Sobolev embedding Theorem, u is continuous in any interior region of the
domain Ω that is away from the vertex V . Note that by the definitions of the weighted spaces, Hk−1,σ

a⃗−1⃗
(Ω) ⊂ K0,2

−1⃗
(Ω).

Therefore, in both cases (1 < p < ∞ and p = ∞), f ∈ K0,2
−1⃗
(Ω). This implies u ∈ K2,2

1⃗
(Ω) (Proposition 2.6). It was shown
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(Lemma 4.7 in [32]) that the discontinuities of u ∈ K2,2
1⃗
(Ω) at V are removable and u → 0 when approaching the vertices.

Hence, u can be regarded as a continuous function on Ω̄ and u(vi) = 0 for any vi ∈ V .
Now, we recall a general approximation result [1,2].

Lemma 4.1. For a polygonal domain G ⊂ R2, let T be a quasi-uniform triangulation of G with mesh size h. Let S be the Lagrange
finite element space of degree k ≥ 1 associated with T . For any v ∈ W k+1

p (G), 1 < p ≤ ∞, let vI ∈ S be its nodal interpolation.
Then,

∥v − vI∥W1
p (G)

≤ Chk
|v|W k+1

p (G)

where C > 0 is independent of h and v.

In viewof (15) and the above arguments on its continuity, letuI ∈ Sn be the nodal interpolation ofu. Recall themesh layers
Li,j from Definition 3.7. Then, we estimate the interpolation error in three regions for u ∈ K

k+1,p
a⃗+1⃗

(Ω): (I)Ω0 := Ω \ ∪i,j Li,j;
(II) Li,j for 0 ≤ j < n; and (III) Li,n. In particular, onΩ0, we have the following.

Lemma 4.2. Let Tn be the mesh given in Definition 3.1. OnΩ0, recall the mesh size h ≃ 2−n from (11). Then,

∥u − uI∥W1
p (Ω0)

≤ Chk
∥u∥

K
k+1,p
a⃗+1⃗

(Ω0)
, 1 < p ≤ ∞,

where C > 0 is independent of h and u.

Proof. SinceΩ0 is away from the vertex set V , by (4), Kk+1,p
a⃗+1⃗

and W k+1
p are equivalent onΩ0. Then, using the estimates in

Lemma 4.1, we have

∥u − uI∥W1
p (Ω0)

≤ Chk
∥u∥W k+1

p (Ω0)
≤ Chk

∥u∥
K

k+1,p
a⃗+1⃗

(Ω0)
.

This completes the proof. �

To carry out the error analysis on Li,j, we need the following result regarding the dilation property in the weighted space.
Recall the grading parameter 0 < κi ≤ 1/2 for the layer Li,j.We consider a new coordinate system that is a simple translation
of the old xy-coordinate systemwith the vertex vi now at the origin of the new coordinate system. For 0 ≤ j ≤ n, we define
the region with dilation

L′

i,j := κ
−j
i Li,j; (16)

and the dilation of a function v on Li,j in the new coordinate system

v′(x, y) := v(κ
j
i x, κ

j
iy), ∀(x, y) ∈ L′

i,j. (17)

This definition makes sense, since vi is the origin in the new coordinate system. Then, we have the following lemma.

Lemma 4.3. Recall the distance function ri to the vertex vi. Then, for m ≥ 0, if v ∈ K
m,p
µ⃗
(Li,j), 1 < p < ∞, we have

|α|≤m

∥r |α|−µi
i ∂αv∥

p
Lp(Li,j)

= κ
j(2−pµi)
i


|α|≤m

∥r |α|−µi
i ∂αv′

∥
p
Lp(L′i,j)

; (18)

if v ∈ Km,∞
µ⃗

(Li,j), we have
|α|≤m

∥r |α|−µi
i ∂αv∥L∞(Li,j) = κ

−jµi
i


|α|≤m

∥r |α|−µi
i ∂αv′

∥L∞(L′i,j)
, (19)

where 0 ≤ j ≤ n.

Proof. Since Li,j is in the neighborhood of the vertex vi, the norm of the spaceK
m,p
µ⃗
(Li,j) has an equivalent expression shown

in (3). Thus, for v ∈ K
m,p
µ⃗
(Li,j), 1 < p ≤ ∞, the left-hand-side terms in (18) and (19) are valid (finite).

For (x, y) ∈ L′

i,j, let w = κ
j
i x and z = κ

j
iy. Then, by (16), (w, z) ∈ Li,j. Thus, for the distance function ri, we have

ri(x, y) = κ
−j
i ri(w, z). Therefore, for 1 < p < ∞, we have

|α|≤m

∥r |α|−µi
i ∂αv′

∥
p
Lp(L′i,j)

=


|α|≤m


L′i,j

|r |α|−µi
i (x, y)∂α1x ∂

α2
y v

′(x, y)|pdxdy

=


|α|≤m


Li,j

|κ
j(µi−|α|)

i r |α|−µi
i (w, z)κ j|α|

i ∂α1w ∂
α2
z v(w, z)|

pκ
−2j
i dwdz
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= κ
j(pµi−2)
i


|α|≤m


Li,j

|r |α|−µi
i (w, z)∂α1w ∂

α2
z v(w, z)|

pdwdz

= κ
j(pµi−2)
i


|α|≤m

∥r |α|−µi
i ∂αv∥

p
Lp(Li,j)

.

This proves (18). For (19), we similarly have
|α|≤m

∥r |α|−µi
i ∂αv′

∥L∞(L′i,j)
=


|α|≤m

∥r |α|−µi
i (x, y)∂α1x ∂

α2
y v

′(x, y)∥L∞(L′i,j)

=


|α|≤m

∥κ
j(µi−|α|)

i r |α|−µi
i (w, z)κ j|α|

i ∂α1w ∂
α2
z v(w, z)∥L∞(Li,j)

= κ
jµi
i


|α|≤m

∥r |α|−µi
i ∂αv∥L∞(Li,j),

which completes the proof. �

Then, we give the error estimates on the mesh layers Li,j for 0 ≤ j < n.

Lemma 4.4. Let Tn be the mesh given in Definition 3.1. Then, for 0 ≤ j < n, 1 < p ≤ ∞, and ai > 0, we have

∥u − uI∥W1
p (Li,j)

≤ Cκ jai
i 2k(j−n)

∥u∥
K

k+1,p
a⃗+1⃗

(Li,j)
,

where C > 0 is independent of j and u.

Proof. By the definition of the weighted space (Definition 2.1), we first have

∥u − uI∥W1
p (Li,j)

≤ C∥u − uI∥K
1,p
1⃗
(Li,j)

.

Note that by the dilation (16), the weight function ρ ≃ ri ≃ 1 on L′

i,j. Therefore, the K
m,p
µ⃗

norm and the Wm
p norm are

equivalent on L′

i,j. Recall the mesh size hi,j ≃ κ
j
i2

j−n on Li,j from (12). Then, by the estimates in (3), (18), Lemma 4.1, and (14),
for 1 < p < ∞, we have

∥u − uI∥
p
W1

p (Li,j)
≤ C∥u − uI∥

p

K
1,p
1⃗
(Li,j)

≤ C

|α|≤1

∥r |α|−1
i ∂α(u − uI)∥

p
Lp(Li,j)

= Cκ j(2−p)
i


|α|≤1

∥r |α|−1
i ∂α(u′

− Iu′)∥
p
Lp(L′i,j)

≤ Cκ j(2−p)
i ∥u′

− Iu′
∥
p
W1

p (L′i,j)

≤ Cκ j(2−p)
i (hi,jκ

−j
i )

pk
∥u′

∥
p
W k+1

p (L′i,j)
≤ Cκ j(2−p)

i (hi,jκ
−j
i )

pk
∥u′

∥
p

K
k+1,p
1⃗

(L′i,j)

≤ C(hi,jκ
−j
i )

pk
∥u∥p

K
k+1,p
1⃗

(Li,j)
≤ C(hi,jκ

−j
i )

pk


|α|≤k+1

∥r |α|−1
i ∂αu∥p

Lp(Li,j)

≤ Cκpjai
i (hi,jκ

−j
i )

pk


|α|≤k+1

∥r |α|−1−ai
i ∂αu∥p

Lp(Li,j)
≤ Cκpjai

i (hi,jκ
−j
i )

pk
∥u∥p

K
k+1,p
a⃗+1⃗

(Li,j)

≤ Cκpjai
i 2pk(j−n)

∥u∥p

K
k+1,p
a⃗+1⃗

(Li,j)
.

For p = ∞, by the estimates in (3), (19), Lemma 4.1, (14), and (12), we have

∥u − uI∥W1
∞(Li,j)

≤ C∥u − uI∥K
1,∞
1⃗

(Li,j)
≤ C


|α|≤1

∥r |α|−1
i ∂α(u − uI)∥L∞(Li,j)

= Cκ−j
i


|α|≤1

∥r |α|−1
i ∂α(u′

− Iu′)∥L∞(L′i,j)
≤ Cκ−j

i ∥u′
− Iu′

∥W1
∞(L′i,j)

≤ Cκ−j
i (hi,jκ

−j
i )

k
∥u′

∥W k+1
∞ (L′i,j)

≤ Cκ−j
i (hi,jκ

−j
i )

k
∥u′

∥
K

k+1,∞
1⃗

(L′i,j)

≤ C(hi,jκ
−j
i )

k
∥u∥

K
k+1,∞
1⃗

(Li,j)
≤ C(hi,jκ

−j
i )

k


|α|≤k+1

∥r |α|−1
i ∂αu∥L∞(Li,j)

≤ Cκ jai
i (hi,jκ

−j
i )

k


|α|≤k+1

∥r |α|−1−ai
i ∂αu∥L∞(Li,j) ≤ Cκ jai

i (hi,jκ
−j
i )

k
∥u∥

K
k+1,∞
a⃗+1⃗

(Li,j)

≤ Cκ jai
i 2k(j−n)

∥u∥
K

k+1,∞
a⃗+1⃗

(Li,j)
.
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Thus, the proof is completed. �

Now, we are ready to analyze the interpolation error on the last layer Li,n.

Lemma 4.5. Let Tn be the mesh given in Definition 3.1. Then, for 1 < p ≤ ∞ and ai > 0, we have

∥u − uI∥W1
p (Li,n)

≤ Cκnai
i ∥u∥

K
k+1,p
a⃗+1⃗

(Li,n)
,

where C > 0 is independent of n and u.

Proof. Let u′(x, y) = u(κn
i x, κ

n
i y) be the dilation (17) of uwith vi as the origin. Then, u′

∈ K
k+1,p
a⃗+1⃗

(L′

i,n) by Lemma 4.3, where
L′

i,n is given in (16). Note that the diameter diam(L′

i,n) ≃ 1. Let φ : L′

i,n → [0, 1] be a smooth cut-off function that is equal to
0 in a neighborhood of vi, but is equal to 1 at all the other nodal points in L′

i,n. We introduce the auxiliary function v = φu′

on L′

i,n. Consequently, we have form ≥ 0 and 1 < p ≤ ∞,

∥v∥K
m,p
1⃗

(L′i,n)
= ∥φu′

∥K
m,p
1⃗

(L′i,n)
≤ C∥u′

∥K
m,p
1⃗

(L′i,n)
, (20)

where C depends onm and the choice of the nodal points. Moreover, since u(vi) = 0, by the definition of v, the interpolation
vI = u′

I = (uI)
′ on L′

i,n.
Note that the K

m,p
1⃗

norm and theWm
p norm are equivalent for v on L′

i,n, since v = 0 in the neighborhood of the vertex vi.
Then, by the usual dilation argument in Sobolev spaces, (20), Lemma 4.1, (3), Lemma 4.3, and (14), for 1 < p < ∞, we have

∥u − uI∥
p
W1

p (Li,n)
≤ κ

n(2−p)
i ∥u′

− u′

I∥
p
W1

p (L′i,n)
= κ

n(2−p)
i ∥u′

− v + v − u′

I∥
p
W1

p (L′i,n)

≤ κ
n(2−p)
i


∥u′

− v∥W1
p (L′i,n)

+ ∥v − u′

I∥W1
p (L′i,n)

p
≤ Cκn(2−p)

i


∥u′

− v∥
K

1,p
1⃗
(L′i,n)

+ ∥v − vI∥W1
p (L′i,n)

p
≤ Cκn(2−p)

i


∥u′

∥
K

1,p
1⃗
(L′i,n)

+ ∥v∥
K

k+1,p
1⃗

(L′i,n)

p
≤ Cκn(2−p)

i ∥u′
∥
p

K
k+1,p
1⃗

(L′i,n)

≤ C∥u∥p

K
k+1,p
1⃗

(Li,n)
≤ Cκpnai

i ∥u∥p

K
k+1,p
a⃗+1⃗

(Li,n)
.

For p = ∞, by the usual dilation argument in Sobolev spaces, (20), Lemma 4.1, (3), Lemma 4.3, and (14), we similarly have

∥u − uI∥W1
∞(Li,n)

≤ κ−n
i ∥u′

− u′

I∥W1
∞(L′i,n)

= κ−n
i ∥u′

− v + v − u′

I∥W1
∞(L′i,n)

≤ κ−n
i


∥u′

− v∥W1
∞(L′i,n)

+ ∥v − u′

I∥W1
∞(L′i,n)


≤ Cκ−n

i


∥u′

− v∥
K

1,∞
1⃗

(L′i,n)
+ ∥v − vI∥W1

∞(L′i,n)


≤ Cκ−n

i


∥u′

∥
K

1,∞
1⃗

(L′i,n)
+ ∥v∥

K
k+1,∞
1⃗

(L′i,n)


≤ Cκ−n

i ∥u′
∥

K
k+1,∞
1⃗

(L′i,n)

≤ C∥u∥
K

k+1,∞
1⃗

(Li,n)
≤ Cκnai

i ∥u∥
K

k+1,∞
a⃗+1⃗

(Li,n)
.

Thus, the proof is completed. �

Based on these estimates, we are able to give the range of the grading parameter κ⃗ , for which we obtain the optimal
convergence rate for the finite element solution un approximating Eq. (1) in theW 1

p norm.

Theorem 4.6. Recall the parameters σ , ai, and ηi from Proposition 2.6 for 1 < p < ∞ and from Proposition 2.7 for p = ∞,
where 1 ≤ i ≤ l. Suppose for some 0 < ai < ηi, the function f ∈ K0,2

−1 (Ω)∩ K
k−1,p
a⃗−1⃗

(Ω) for 1 < p < ∞ or f ∈ Hk−1,σ
a⃗−1⃗

(Ω) for
p = ∞. For the finite element space Sn of degree k ≥ 1, choose κi = min(2−k/ai , 1/2) in Definition 3.1. Then, for n sufficiently
large, the finite element solution un ∈ Sn of Eq. (1) satisfies

∥u − un∥W1
p (Ω)

≤ C dim(Sn)−k/2
∥f ∥

K
k−1,p
a⃗−1⃗

(Ω)
, 1 < p < ∞; (21)

∥u − un∥W1
∞(Ω)

≤ C dim(Sn)−k/2
∥f ∥

H
k−1,σ
a⃗−1⃗

(Ω)
, (22)

where C is independent of n and f .
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Proof. We first show the case for the interpolate error with 1 < p < ∞. Summing up the estimates in Lemmas 4.2, 4.4, and
4.5 for different sub-regions of the domainΩ , and using the fact that κi ≤ 2−k/ai , we have

∥u − uI∥
p
W1

p (Ω)
≤ C


2−pnk

∥u∥p

K
k+1,p
a⃗+1⃗

(Ω0)
+


1≤i≤l,0≤j≤n

κ
pjai
i 2pk(j−n)

∥u∥p

K
k+1,p
a⃗+1⃗

(Li,j)


≤ C


2−pnk

∥u∥p

K
k+1,p
a⃗+1⃗

(Ω0)
+


1≤i≤l,0≤j≤n

2−pkn
∥u∥p

K
k+1,p
a⃗+1⃗

(Li,j)


≤ C2−pnk

∥u∥p

K
k+1,p
a⃗+1⃗

(Ω)
.

Now, for p = ∞, a similar estimate gives

∥u − uI∥W1
∞(Ω)

= max
1≤i≤l,0≤j≤n

(∥u − uI∥W1
∞(Ω0)

, ∥u − uI∥W1
∞(Li,j)

)

≤ C max
1≤i≤l,0≤j≤n


2−nk

∥u∥
K

k+1,∞
a⃗+1⃗

(Ω0)
, κ

jai
i 2k(j−n)

∥u∥
K

k+1,∞
a⃗+1⃗

(Li,j)


≤ C max

1≤i≤l,0≤j≤n


2−nk

∥u∥
K

k+1,∞
a⃗+1⃗

(Ω0)
, 2−kn

∥u∥
K

k+1,∞
a⃗+1⃗

(Li,j)


≤ C2−nk

∥u∥
K

k+1,∞
a⃗+1⃗

(Ω)
.

Recall dim(Sn) ≃ 4n. Therefore, by (10) in Corollary 3.5 and Proposition 2.6, for 1 < p < ∞, we have

∥u − un∥W1
p (Ω)

≤ C∥u − uI∥W1
p (Ω)

≤ C2−nk
∥u∥

K
k+1,p
a⃗+1⃗

(Ω)
≤ C dim(Sn)−k/2

∥f ∥
K

k−1,p
a⃗−1⃗

(Ω)
,

which proves (21). For p = ∞, by (10) and Corollary 2.8, we show (22) by

∥u − un∥W1
∞(Ω)

≤ C∥u − uI∥W1
∞(Ω)

≤ C2−nk
∥u∥

K
k+1,∞
a⃗+1⃗

(Ω)
≤ C dim(Sn)−k/2

∥f ∥
H

k−1,σ
a⃗−1⃗

(Ω)
. �

Remark 4.7. Theorem 4.6 gives the range for the grading parameter κ⃗ and the explicit conditions on the right hand
side function f , such that the optimal convergence rate can be obtained for the finite element solution in the W 1

p norm
(1 < p ≤ ∞) on convex polygonal domains. The ingredients for the W 1

p estimates in Theorem 4.6 are the stability result in
Theorem 3.4 and the interpolation error estimate developed in this section. Note that the interpolation error estimates are
independent of the convexity of the domain. Therefore, we expect to derive the analogue of Theorem 4.6 for non-convex
domains once the stability of the Ritz projection (Theorem 3.4) is available for non-convex domains. This is for the time
being still an open problem.

Remark 4.8. Define the sign function of a real number t

sign(t) =


−1 if t < 0,
0 if t = 0,
1 if t > 0.

Then, using the duality argument, the following Lp error estimates can be derived on the graded meshes (see [13,17])

∥u − un∥
p
Lp(Ω) ≤ C


inf

z1∈Sn
∥u − z1∥W1

p (Ω)


inf

z2∈Sn
∥w − z2∥W1

q (Ω)


, (23)

where 1 < p < ∞, q = p/(p − 1), andw ∈ W 1
q (Ω) ∩ {w|∂Ω = 0} is the solution to

−1w = sign(u − un)|u − un|
p−1 inΩ.

However, numerical experiments have shown that the actual convergence rate in Lp may be better than that given in (23).
A thorough theoretical investigation is thus needed to address this issue and to obtain a sharp Lp error analysis on graded
meshes.

5. Numerical illustrations

In this section, we report numerical results that confirm our theoretical results in Theorem 4.6. The model problem we
shall solve is as follows:

−1u = f inΩ, u = 0 on ∂Ω, (24)

where we choose f = 1 and Ω is a convex polygonal domain. In the numerical tests, we use the linear Lagrange finite
element methods associated with the proposed graded meshes.

For the domain Ω in Eq. (24), denote by χi the interior angle of the domain at the vertex vi. Let ωi ⊂ Ω be the
neighborhood of vi such that ω̄i does not include other vertices. Then, by the regularity estimates in [29], the solution
u|ωi ∈ H1+π/χi−ϵ(ωi) for ϵ > 0 arbitrarily small. Therefore, when χ i < 90°, by the Sobolev embedding Theorem, the
solution is in W 2

p in the neighborhood ωi for any 1 < p ≤ ∞. Thus, quasi-uniform meshes near these vertices will lead
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Fig. 3. The triangular domainwith angles 50°, 60°, and 70°: the gradedmesh after three refinements with κ⃗ = (0.4, 0.5, 0.5) (left); the numerical solution
(right).

Fig. 4. The quadrilateral domain with angles 110° (v1), 110° (v2), 70° (v3), and 70° (v4): the graded mesh after three refinements with κ⃗ =

(0.3, 0.3, 0.5, 0.5) (left); the numerical solution (right).

to the first order convergence for the linear approximation. Since the solution is smooth in the interior of the domain, we
need to focus on the vertices with angles>90°, where special mesh grading may be needed. For these vertices, the optimal
graded meshes are determined as follows.

Case I (1 < p < ∞). Since f = 1 and χi > 90°, near vi, u may not belong to W 2
p , but u ∈ K

2,p
a⃗+1⃗

for any 0 ≤ ai < ηi =

π/χi − 1 + 2/p (Proposition 2.6). Based on Theorem 4.6, we can choose the grading parameter for the vertex vi

κi = min(2−1/ai , 1/2) for any 0 < ai < ηi = π/χi − 1 + 2/p (25)

in order to obtain the optimal convergence rate in theW 1
p norm for the linear finite element solution.

Case II (p = ∞). By Proposition 2.7 and Corollary 2.8, near the vertex vi, the solution belongs to K2,∞
a⃗+1⃗

for any 0 ≤ ai < ηi,
where the parameter ηi = π/χi − 1 − σ . Taking σ → 0 and by Theorem 4.6, we can choose the grading parameter for the
vertex vi

κi = min(2−1/ai , 1/2) for any 0 < ai < ηi = π/χi − 1 (26)

in order to obtain the optimal convergence rate in theW 1
∞

norm for the linear finite element solution.
Throughout this section, the convergence rate is computed by taking the ratio of the difference of two consecutive levels.

Namely,

W 1
p convergence rate at level j := log2


∥uj − uj−1∥W1

p (Ω)

∥uj+1 − uj∥W1
p (Ω)


. (27)

Since the solution u in the model problem is unknown, by Theorem 4.6, the rate in (27) is a good estimation of the actual
convergence rate. Recall the dimension of the finite element space dim(Sn) ≃ 4n. Therefore, we achieve the optimal
convergence rate for the linear finite element method when the values computed in (27) converge to 1 as j increases, while
we lose the optimal rate if the values from (27) are less than 1. In fact, the closer these values to 1, the better convergence
rate we obtain.

To compute the asymptotic convergence rate (27) at the jth level, we must compute the difference between functions
defined on different grids, one of which is defined on a coarse grid and the other of which is defined on the fine grid. Under
the algorithmic strategy that generates the graded mesh, the coarse grid is constructed in such a way that it is nested in the
fine grid (see Fig. 2). Therefore, any node in the fine grid is either the node on the coarse grid or it is the point on the edge
of the coarse grid triangulation. Therefore, we only need to compute the interpolation of the coarse grid function uj−1 onto
the fine grid. This can be done using a simple linear interpolation using the patch information of the fine nodes.

To verify the theory in Theorem 4.6, we have tested a variety of domains and graded meshes. These include a triangular
domain with acute angles (Fig. 3), various polygonal domains with the largest opening angles ranging from 110° to 150°
(Figs. 4–6). For each domain, we report the W 1

p convergence rates (27) on graded meshes Tj obtained from consecutive
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Fig. 5. The polygonal domain with angles 130° (v1), 130° (v2), 50° (v3), and 50° (v4): the gradedmesh after three refinements with κ⃗ = (0.2, 0.2, 0.5, 0.5)
(left); the numerical solution (right).

Fig. 6. The polygonal domain with angles = 150° at v1 , and<90° at other vertices: the graded mesh after three refinements with κ⃗ = (0.2, 0.5, 0.5, 0.5)
(left); the numerical solution (right).

Table 1
TheW 1

p convergence rate of the linear finite elementmethod on the triangular domain (Fig. 3)
with κ1 = 0.4 and κ1 = 0.5.

refinements with different parameters κ⃗ . We also select different values of p in the range 1 < p ≤ ∞ in these experiments
for fully validating our finite element algorithms. The numerical results are listed in Tables 1–4. Note that the parameter
κ⃗ controls the mesh refinements near each vertex vi by the value of κi. As discussed above, we shall use quasi-uniform
refinements (κi = 0.5) near vertices with interior angles<90° in all the tests, since it is sufficiently effective approximating
local solutions. Thus, in these tables, we only specify the values of κi that correspond to vertices with interior angles>90°,
and the unspecified values of κi by default equal 1/2. We also highlight the results in some of the columns, which indicates
that this column is the border line case in terms of the values of κi, below and equal to which the optimal convergence rate
is predicted by the theory.

5.1. Numerical tests in W 1
p norms

We proceed to report the test results.
Test 1: a triangular domain with angles 50°, 60°, and 70° (Fig. 3). For this case, the solution in fact belongs to W 2

p (Ω)
for 1 < p ≤ ∞. Therefore, for a vertex vi, we can choose any value κi ∈ (0, 1/2] to obtain the optimal convergence in the
W 1

p norm. In particular, quasi-uniform refinements should lead to the optimal convergence rate. We, therefore, report the
convergence history only for two values of κ⃗: (I) κ⃗ = (0.4, 0.5, 0.5); (II) κ⃗ = (0.5, 0.5, 0.5) (quasi-uniform refinements).
The W 1

p convergence rates for p = 3, 5, 10, 15, and ∞ in Table 1 verify this theoretical prediction. A sample mesh and the
numerical solution are presented in Fig. 3.

Test 2: a polygonal domainwith the largest opening angle 110° (Fig. 4). Asmentioned above, we choose κ3 = κ4 = 0.5
for the vertices v3 and v4 due to the angle condition. In view of (25) and (26), for the vertices v1 and v2, since π/χi = 18/11
(i = 1, 2), special mesh grading may be necessary. In particular, for 1 < p < ∞, we can choose

κi = min(2−1/ai , 1/2) for any 0 < ai < 18/11 − 1 + 2/p = 7/11 + 2/p;

and for p = ∞, we choose

κi = 2−1/ai for any 0 < ai < 18/11 − 1 = 7/11.
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Table 2
TheW 1

p convergence rate of the linear finite element method for p = 3, 5, 10, 15 and p = ∞

on the polygonal domain with the 110° angles (Fig. 4).

Therefore, for the first two vertices (i = 1, 2), the optimal ranges for some specific values of p are:
κi ∈ (0, 0.5] (p = 3), κi ∈ (0, 0.5] (p = 5), κi ∈ (0, 0.436) (p = 10),
κi ∈ (0, 0.406) (p = 15), κi ∈ (0, 0.336) (p = ∞).

(28)

In Table 2, we list the convergence rates of the numerical solutions on meshes with κ1 = κ2 = 0.1 − 0.5 (recall that
κ3 = κ4 = 0.5 for all the meshes). It is clear from the table that for p = 3 and 5, the optimal convergence rate is achieved
for all κ1, κ2 ≤ 0.5; for p = 10 and 15, we obtain the optimal convergence rate when κ1, κ2 ≤ 0.4 but lose the optimal rate
on quasi-uniform meshes κ1 = κ2 = 0.5; for p = ∞, the optimal rate is obtained when κ ≤ 0.3 but not when κ = 0.4 and
0.5. These numerical results verify the theoretical prediction. Namely, our construction (28) leads to finite element methods
that approximate the solution with the optimal convergence rate in theW 1

p norm. A sample mesh is demonstrated in Fig. 4.
Test 3: a polygonal domains with the largest opening angle 130° (Fig. 5). For this case, the optimal range for the

parameter κ⃗ is determined as follows. For the vertices v3 and v4, it is sufficient to choose κ3 = κ4 = 0.5 for all the values
of p, since χ i < 90°. For the vertices v1 and v2, since π/χi = 18/13 (i = 1, 2), special mesh grading may be necessary to
obtain the optimal convergence rate. In view of (25) and (26), for 1 < p < ∞, we can choose

κi = min(2−1/ai , 1/2) for any 0 < ai < 18/13 − 1 + 2/p = 5/13 + 2/p;

and for p = ∞, we choose

κi = 2−1/ai for any 0 < ai < 18/13 − 1 = 5/13.

Thus, by Theorem 4.6, for the first two vertices (i = 1, 2), the optimal ranges for some specific values of p are:
κi ∈ (0, 0.5] (p = 15/14), κi ∈ (0, 0.5] (p = 3), κi ∈ (0, 0.413) (p = 5),
κi ∈ (0, 0.305) (p = 10), κi ∈ (0, 0.262) (p = 15), κi ∈ (0, 0.164) (p = ∞).

(29)

In Table 3, we list the convergence rates of the numerical solutions on meshes with κ1 = κ2 = 0.1 − 0.5 (recall that
κ3 = κ4 = 0.5 for all the meshes). These results, similar to those in Test 2, illustrate the effectiveness of our algorithms in
(29) to recover the optimal rate of convergence in theW 1

p norm for 1 < p ≤ ∞.
Test 4: a polygonal domain with the largest opening angle 150° (Fig. 6). The fourth set of tests are performed on a

polygonal domain with the largest corner angle given by 150° at the vertex v1. We choose the domain such that the interior
angles at other vertices are less than 90°. Thus, we only need to focus on possible special refinements near v1, since quasi-
uniform refinements (κi = 0.5) near other vertices shall be sufficient for good linear finite element approximations in W 1

p
for 1 < p ≤ ∞.

As in Test 2 and Test 3, the optimal range of the grading parameter κ1 at the vertex v1 depends on the index p of theW 1
p

space. In particular, for 1 < p < ∞, by (25), we can choose

κ1 = min(2−1/a1 , 1/2) for any 0 < a1 < 18/15 − 1 + 2/p = 1/5 + 2/p.
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Table 3
TheW 1

p convergence rate of the linear finite element method for p = 15/14, 3, 5, 10, 15 and
p = ∞ on the polygonal domain with 130° angles (Fig. 5).

Fig. 7. The L-shaped domain: the graded mesh after three refinements with κ1 = 0.2 toward the reentrant corner (left); the numerical solution (right).

Thus, by Theorem 4.6, for the vertex v1, the optimal ranges for some specific values of p are:
κ1 ∈ (0, 0.5] (p = 15/14), κ1 ∈ (0, 0.449] (p = 3), κ1 ∈ (0, 0.315) (p = 5),
κ1 ∈ (0, 0.176) (p = 10), κ1 ∈ (0, 0.125) (p = 15). (30)

The convergence rates of the numerical solutions on meshes with κ1 = 0.1 − 0.5 are listed in Table 4. It is evident from
this table that for any test value of p, we obtain optimal convergence rates when the grading parameter stays within the
range given in (30); and we lose the optimal rate for any value of κ1 that is out of the range. This implies that sufficient mesh
grading is necessary to achieve the optimal convergence rate inW 1

p when approximating singular solutions. The theory that
leads to the sharp selection criteria for the grading parameters is once again clearly verified.

5.2. Additional numerical results

Recall the hypothesis in Remark 4.7 for the W 1
p convergence on non-convex domains and the claims in Remark 4.8 for

the Lp convergence on convex domains. We here report some corresponding numerical results for readers’ reference.
In Table 5, we display theW 1

p convergence rate of the numerical solution on a non-convex domain (the L-shaped domain
in Fig. 7). Let v1 be the vertex associatedwith the reentrant corner. In view of (25), near other vertices, quasi-uniformmeshes
are sufficient for the optimal W 1

p convergence with the selected values of p. Therefore, we only test different values of the
grading parameter κ1 for the vertex v1. Although our theoretical results do not apply to non-convex domains, the numerical
tests seem to imply that the formula (25) still gives rise to the optimal convergence rate in these W 1

p norms. For example,
using (25), we have the ranges of κ1 near v1

κ1 ∈ (0, 0.5] (p = 15/14) and κ1 ∈ (0, 0.125) (p = 3),

which are consistent with the ranges in Table 5, for which the optimalW 1
p convergence is obtained.
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Table 4
TheW 1

p convergence rate of the linear finite element method for p = 15/14, 3, 5, 10, and 15
on the polygonal domain with a 150° angle (Fig. 6).

Table 5
The W 1

p convergence rate of the linear finite element method for p = 15/14 and 3 on the
L-shaped domain (Fig. 7).

Table 6
The Lp convergence rate of the linear finite element method for p = 3 and 5 on the polygonal
domain with a 150° angle (Fig. 6).

In Table 6, we list the Lp convergence rate on the polygonal domain (Fig. 6) for the same numerical solutions as in Test
4. Recall that the highlighted columns correspond to the border line case for the values of κ1, below and equal to which the
optimal W 1

p convergence is predicted by our theory. However, it seems that for p = 3 and 5, the Lp convergence rates are
optimal for κ1 ≤ 0.5 and κ1 ≤ 0.4, respectively. These are better convergence results than those predicted by (23), and
imply that the range of the grading parameter for the optimal Lp convergencemay be larger than the range of the parameter
for the optimalW 1

p convergence.
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6. Conclusion

We study the regularity and finite element approximations for elliptic equations in theW 1
p norm (1 < p ≤ ∞), especially

when the solution possesses singularities due to the non-smoothness of the domain. Using appropriate weighted Sobolev
spaces and weighted Hölder spaces, we first formulate regularity estimates for the singular solution that resemble the full-
regularity result for smooth solutions in the usual Sobolev spaces. Then, we describe the construction of a family of graded
meshes and the associated finite element methods. We further provide the regularity requirement on the given data and
propose specific selection criteria for the grading parameters, such that the associated finite element solution approximates
the possible singular solution with the optimal convergence rate in the W 1

p norm. The ingredients of our approach include
the regularity estimates in weighted spaces (Propositions 2.6, 2.7 and Corollary 2.8), a finite element stability result on
graded meshes (Theorem 3.4), and rigorous interpolation error estimates in weighted spaces. Numerical experiments are
conducted on a variety of test problems. The numerical results are clearly aligned with the theoretical prediction, and hence
validate the proposed method.
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