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LINEAR AND QUADRATIC FINITE VOLUME METHODS ON

TRIANGULAR MESHES FOR ELLIPTIC EQUATIONS WITH

SINGULAR SOLUTIONS

GUANGHAO JIN, HENGGUANG LI, QINGHUI ZHANG, AND QINGSONG ZOU

Abstract. This paper is devoted to the presentation and analysis of some linear and quadratic
finite volume (FV) schemes for elliptic problems with singular solutions due to the non-smoothness
of the domain. Our FV schemes are constructed over specially-designed graded triangular meshes.

We provide sharp parameter selection criteria for the graded mesh, such that both the linear and
quadratic FV schemes achieve the optimal convergence rate approximating singular solutions in
H1. In addition, we show that on the same mesh, a linear FV scheme obtains the optimal rate of

convergence in L2. Numerical tests are provided to verify the analysis.
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1. Introduction

With good local flux-conservation properties, the finite volume method (FVM)
is used in a wide range of computations, especially in computational fluid dynamics
(see [5, 25, 28, 30, 39, 40, 41, 44] and references therein). The mathematical theory
of FVM [19, 30, 34] has not been fully developed, at least, not as satisfactory as
that for the finite element method. Most works concentrate on linear or quadratic
schemes on quasi-uniform meshes (see e.g., [4, 7, 18, 23, 34, 35, 45]). In addition,
a few studies have been conducted for high order FV schemes. We here mention
1D high order FV schemes [8, 42], high order FV schemes over rectangular meshes
[6, 46], and high order FV schemes over triangular meshes [11, 12]. These high
order methods are efficient when the solution of the problem is sufficiently smooth.

It is well known that the solution of elliptic equations may have singularities due
to the non-smoothness of the domain, even when the other given data are smooth.
In particular, consider the Poisson problem

−∆u = f in Ω, u = 0 on ∂Ω,(1)

where Ω is a bounded polygonal domain in R2. Then, given f ∈ H−1(Ω) = H1
0 (Ω)

′,
there exists a unique solution u ∈ H1

0 (Ω) to (1), defined by the variational form

(2) a(u, v) =

∫
Ω

∇u · ∇vdx =

∫
Ω

fvdx, ∀ v ∈ H1
0 (Ω).

Received by the editors March 15, 2015.

2000 Mathematics Subject Classification. 65N08, 65N15, 65N50, 35J15.
H. Li was partially supported by the NSF Grants DMS-1158839, DMS-1418853, and the Wayne

State University Grants Plus Program. Q. Zhang was partially supported by the Natural Science
Foundation of China under grant 11001282 and 11471343, and Guangdong Provincial Natural

Science Foundation of China under grant 2015A030306016. Q. Zou was partially supported
by the National Natural Science Foundation of China through grants 11571384 and 11428103,
and by Guangdong Provincial Natural Science Foundation of China under grant through grant
2014A030313179.

Correspondence to Qingsong Zou : mcszqs@mail.sysu.edu.cn.

244



OPTIMAL FVMS FOR SINGULAR SOLUTIONS 245

In the case that the boundary ∂Ω is smooth, we have the full regularity estimate
for the solution [17, 20, 36],

∥u∥Hm+1(Ω) ≤ C∥f∥Hm−1(Ω), m ≥ 0,(3)

where the constant C > 0 depends on the domain, but not on f . On a polygo-
nal domain Ω, however, the full regularity result holds only in the interior region
away from the vertices. On the entire domain Ω, the solution u may only belong
to H1+s(Ω) for a given smooth function f , where s is fixed and depends on the
geometry of the boundary.

The singularity in the solution can significantly slow down the convergence rate
of the numerical approximation, as well as raise concerns on the theoretical justifi-
cation of the numerical scheme. Compared with the tremendous effort to develop
optimal finite element algorithms [1, 2, 3, 22, 29, 33, 38, 43], fewer results are avail-
able on the FVMs for singular solution, and most of them only concern linear FV
schemes. See [9, 15] and reference therein for some relevant works. In particular,
three linear FVMs are proposed in [15] to approximate solutions of equation (1)
with corner singularities. The mesh and dual mesh are carefully designed, such
that the associated FV solutions achieve the optimal rate of convergence that is
expected for smooth solutions.

In this paper, we develop new linear and quadratic FVMs approximating singular
solutions of equation (1). In particular, we give a simple and explicit construction of
graded meshes and the dual meshes, such that the associated linear and quadratic
FV solutions achieve the optimal convergence rate in the H1-norm. In addition, we
will show that the L2-convergence rate of the proposed linear FVM is also optimal.
Our analysis is based on the stability of the FV schemes, sharp regularity estimates
in suitable weighted Sobolev spaces, and rigorous interpolation error estimates in
these spaces. These results extend to more general elliptic equations. It is also
possible to apply the analytical tools developed here to other high order well-posed
FVMs.

The rest of the paper is organized as follows. In Section 2, we introduce the linear
and quadratic FV schemes and the graded triangular meshes. Determined by a set
of grading parameters, these graded meshes have good geometric properties that will
also be discussed. In Section 3, we present the detailed analysis in suitable function
spaces and obtain the main result of the paper. In particular, we give regularity
estimates, interpolation error estimates, and the continuity estimates of the FV
bilinear forms. Using these results, in Theorem 3.9, we provide sharp parameter
selection criteria for the graded mesh, such that the optimal convergence rate is
recovered for the associated FV solutions in the H1-norm. The L2 error estimate
for a linear FV algorithm is summarized in Corollary 3.11. In Section 4, we report
numerical results from both linear and quadratic FV schemes. These results are in
strong agreement with our theoretical prediction, and hence verify the theory.

Throughout the paper, by a ≃ b, we mean that there are constants C1, C2 > 0,
independent of the mesh level, such that C1b ≤ a ≤ C2b. The generic constant
C > 0 in our analysis below may be different at different occurrences. It will
depend on the computational domain, but not on the functions involved in the
estimates or the mesh level in the FV algorithms.
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Figure 1. The barycenter control volume (left) and the circum-
center control volume (right). The control volume DP0 is the
polygon surrounded by the line segmentsM1Q1M2Q2 . . .M6Q6M1,
where Mi is the midpoint of the edge P0Pi, i = 1, . . . , 6.

2. Linear and quadratic FV schemes on graded meshes

In this section, we introduce the linear and quadratic FVMs associated with a
family of graded mesh. We also summarize properties of the numerical algorithms
that are useful for further analysis.

2.1. Linear and quadratic FVMs. Let T be a conforming, shape-regular, but
not necessary quasi-uniform triangulation of Ω. With respect to T , we recall the
Lagrange finite element space

(4) UT =
{
v ∈ C(Ω) : v|τ ∈ Pk, for all τ ∈ T , v|∂Ω = 0

}
,

where k = 1, 2 and Pk is the set of all polynomials of degree ≤ k. It is clear that
UT ⊂ H1

0 (Ω). Now suppose that T ′ is another partition (dual mesh) of Ω. Each
element τ ′ ∈ T ′ is often called a control volume and it is chosen to be a polygon.
We require that if two control volumes intersect, they either share a vertex or an
edge in T ′. Let VT ′ be the piecewise constant function space with respect to T ′

defined by

VT ′ =
{
v ∈ L2(Ω) : v|τ ′ = constant for all τ ′ ∈ T ′

}
.(5)

Normally, we require that dim(UT ) = dim(VT ′) and call UT the trial space and VT ′

the test space, respectively.
The construction of the dual mesh T ′ plays a critical role in the design of FV

schemes. In this paper, we consider the following constructions of control volumes
in T ′ for the linear (k = 1) and quadratic (k = 2) schemes.

Definition 2.1. (Control Volumes for k = 1). Let τ ∈ T be a triangle. Associated
with each vertex in T , a common construction of the control volume is obtained
by connecting some prechosen interior point Q ∈ τ to the midpoint of each edge of
τ . In particular, we consider the following two constructions. When Q is chosen
as the barycenter of the triangle, T ′ is the barycenter dual mesh [24], (see Figure
1 for a control volume); and when Q is chosen as the circumcenter of the triangle,
T ′ becomes the circumcenter dual mesh [37] (see Figure 1).
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Figure 2. A control volume DP0 (left) and a control volume DM0 (right).

Definition 2.2. (Control Volumes for k = 2). For the quadratic dual mesh, we
not only construct a control volume DP0 for each interior vertex P0 of T , but also
construct a control volume DM0 for the midpoint M0 of each internal edge E in T .
In Figure 2, we illustrate the construction of a class of control volumes for quadratic
FV schemes on triangular meshes: (I) In the control volume DP0 ,∣∣P0P0i

∣∣ = α
∣∣P0Pi

∣∣, ∣∣P0M0i

∣∣ = 3

2
β
∣∣P0Qi

∣∣, 1 ≤ i ≤ 7,

where 0 < α < 1
2 , 0 < β < 2

3 are two given parameters and Qi is the barycenter of
the triangle. (II) In the control volume DM0 ,∣∣P0M0i

∣∣ = 3

2
β
∣∣P0Qi

∣∣, i = 1, 2 and
∣∣P2M1i

∣∣ = 3

2
β
∣∣P2Qi

∣∣, i = 1, 2.

We shall in particular consider the following choices of α and β that lead to different
FV schemes. The case α = β produces a very simple partition: DP0 ∩τ is a triangle
homothetic to τ , and DM0 ∩τ is a pentagon. Li, Chen and Wu considered in [34] an
FV scheme corresponding to α = β = 1/3. For the case α ̸= β, we refer to Liebau
[35] for α = 1/4, β = 1/3 and Emonot [16] for α = 1/6, β = 1/4.

It is clear that for a given triangulation T , the trial space UT always belongs to
the broken Sobolev space H2

T (Ω) consisting of functions that are piecewise H2 with
respect to T . We also note that in both cases (k = 1, 2), each control volume from
the above constructions is associated with an interior node in the triangulation T ,
namely, a vertex in the linear FVMs and a vertex or a midpoint on the edge in the
quadratic FVMs.

From now on, we shall denote by T ′ one of the dual meshes defined in Definitions
2.1 and 2.2. For the trial space UT in (4), we choose its degree k = 1 if T ′ is from
Definition 2.1; and k = 2 if T ′ is from Definition 2.2. We shall also modify the test
space in (5), such that

VT ′ =
{
v ∈ L2(Ω) : v|τ ′ = constant for all τ ′ ∈ T ′, v|∂Ω = 0

}
.(6)
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Thus, the FVM solving (1) is defined as follows. Find uT ∈ UT such that

(7)

∫
∂τ ′

∇uT · nds+
∫
τ ′
fdx = 0 , ∀ τ ′ ∈ T ′

0 ,

where T ′
0 ⊂ T ′ is the union of control volumes associated with the interior nodes

in the triangulation T , and n is the unit normal outward vector to τ ′.
Let ET ′ be the union of all interior edges in T ′. For an edge E ∈ ET ′ , let

τ ′1, τ
′
2 ∈ T ′ be the two control volumes having the common edge E. Then, we

denote by nE the unit normal direction pointing from τ ′1 to τ ′2 and define the jump
of a function vT ′ ∈ VT ′ over E: [vT ′ ] = vT ′ |τ1 − vT ′ |τ2 . Define the norm for
vT ′ ∈ VT ′

|vT ′ |T ′ =
( ∑

E∈ET ′

h−1
E

∫
E

[vT ′ ]2ds
)1/2

,(8)

where hE is the length of E. Then, for any vT ′ ∈ VT ′ , the FV solution uT in (7)
satisfies

(9) aT (uT , vT ′) =

∫
Ω

fvT ′dx = (f, vT ′),

where the bilinear form aT (·, ·) is defined for all u ∈ H1
0 (Ω) ∩W 2

p (Ω), p > 1, as

(10) aT (u, vT ′) := −
∑

E∈ET ′

∫
E

∇u · nE [vT ′ ] ds.

Remark 2.3. Different choices of the interior point Q in Definition 2.1 do not affect
the stability of the linear FV scheme. See [45] for a detailed explanation. Moreover,
it has been shown in [45] that the quadratic FV scheme is stable if the minimal
angle θ0 ≥ 7.11◦ for α = 1/6, β = 1/4; if θ0 ≥ 9.98◦ for α = 1/4, β = 1/3; and if
θ0 ≥ 20.95◦ for α = β = 1/3.

We now recall the following stability result from [45].

Theorem 2.4. Let T be a shape regular conforming triangulation of Ω. Consider
the linear (k = 1) and quadratic (k = 2) FV schemes. Suppose the mesh size in
T is sufficiently small. Let vT ∈ UT . Then, the following estimate holds for the
linear FVMs (Definition 2.1).

(11)
∣∣vT ∣∣H1(Ω)

≤ C sup
VT ′∋vT ′ ̸=0

aT (vT , vT ′)∣∣vT ′
∣∣
T ′

,

where the constant C is independent of the mesh size. In addition, if the minimal
angle θ0 is not too small, (11) also holds for the quadratic FVMs (Definition 2.2).

Remark 2.5. Due to the availability of the stability results, we only consider the
linear and quadratic FV schemes mentioned above. However, our approach can
also be used to analyze other stable high order FV methods.

2.2. Graded meshes. We give the construction of a family of graded meshes for
the triangulation T of the domain, and discuss its geometric properties.

Definition 2.6. (Graded Refinements). Let vi ∈ ∂Ω, 1 ≤ i ≤ l, be the ith vertex
of Ω and V := {vi} be the vertex set. Let T be a triangulation of Ω whose vertices
include V, such that no triangle in T has more than one of its vertices in V. Define
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Figure 3. Graded triangulations and mesh layers (left – right):
an initial triangle with A ∈ V and B,C /∈ V; one graded refinement

to A, κA = |AD|
|AB| =

|AE|
|AC| =

|DE|
|BC| ; three mesh layers resulted by two

consecutive graded refinements toward A.

Figure 4. Three consecutive graded refinements of a polygonal
domain with κ⃗ = (0.2, 0.5, 0.5, 0.5) (left – right): T0, the initial
triangulation; T1, the mesh after one refinement; T2, the mesh
after two refinements.

the vector κ⃗ = (κ1, κ2, · · · , κl), for κi ∈ (0, 1/2]. Then, a κ⃗-refinement of T , denoted
by κ⃗(T ), is obtained by dividing each edge AB of T in two parts as follows:

• If neither A nor B is in V, then we divide AB into two equal parts.
• Otherwise, if A = vi ∈ V, we divide AB into AC and CB such that |AC| =
κi|AB|.

This will divide each triangle of T into four triangles (Figure 3). Given an initial
triangulation T0, the associated family of graded triangulations {Tj : j ≥ 0} is
defined recursively, Tj+1 = κ⃗(Tj).

Remark 2.7. The grading parameter can be characterized in the following equation
using the vector c⃗ = (c1, c2, . . . , cl)

κi = 2−1/ci , 1 ≤ i ≤ l, 0 < ci ≤ 1.(12)

Therefore, 0 < κi ≤ 1/2 is completely determined by the vector c⃗. Note that in the
case that κi = 1/2 (ci = 1), we have a quasi-uniform triangulation near the vertex
vi; and when κi < 1/2 (0 < ci < 1), we have the graded mesh near vi.

A close examination of the graded mesh leads to our definition of mesh layers
that are associated with these graded refinements toward the vertices.

Definition 2.8 (Mesh Layers). Recall from Definition 2.6 that the triangulation Tj ,
0 ≤ j ≤ n, is obtained after j successive graded refinements of T0 with parameter
κ⃗. Let Ti,j ⊂ Tj , 1 ≤ i ≤ l, be the union of (closed) triangles in Tj having vi ∈ V
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as a vertex. Namely, Ti,j is the immediate neighborhood of vi in Tj . Define the
regions near vi, resulted from the graded refinement

Li,j = Ti,j \ Ti,j+1, for 0 ≤ j < n, and Li,n = Ti,n,

Then, we denote the jth layer Lj , 0 ≤ j ≤ n, of the mesh Tn by

Lj = ∪1≤i≤lLi,j .

See Figure 3 for an illustration of mesh layers.

Remark 2.9. Let Ω0 := Ω\∪iTi,0. It is apparent that Ω = Ω0∪ (∪0≤j≤nLj). Based
on Definition 2.6, on the triangulation Tn, the mesh size in Li,j is

hi,j ≃ κji2
j−n,(13)

and the mesh size on Ω0

h ≃ 2−n.(14)

In addition, the successive refinements in Definition 2.6 lead to the triangulation
Tn with shape-regular triangles. The number of triangles in Tn is O(4n). Thus, the
dimension of the associated linear and quadratic FVMs is N ≃ 4n.

3. Error analysis

In this section, we give detailed regularity and error analysis for the proposed
FVMs on graded meshes. This shall lead to a specific range for the grading pa-
rameter κ⃗, such that the associated FVMs approximate the singular solution in the
optimal rate.

Throughout the rest of the paper, for simplicity, we denote the graded triangu-
lation Tn by T and denote the dual mesh of Tn by T ′.

3.1. Weighted Sobolev spaces. We first recall the following useful regularity
results for (1) in Sobolev spaces (Section 2.7 in [21]).

Proposition 3.1. Let ϕi be the interior angle of Ω at vi ∈ V and define ϕ :=
maxi(ϕi). Then, the Laplace operator

−∆ :Wm+2
p (Ω) ∩H1

0 (Ω) →Wm
p (Ω), m ≥ 0,

defines an isomorphism, provided that the parameter p satisfies 1 < p < ηm, where{
ηm = ∞ for π/ϕ ≥ m+ 2;
ηm = 2

m+2−π/ϕ for π/ϕ < m+ 2.

Therefore, the full regularity estimate (3) only holds for the values of m, such
that ηm > 2. In particular, even for a smooth function f , the solution may not be in
H2 when the domain has re-entrant corners (ϕ > π); and not in H3 when ϕ > π/2.
These singular solutions, however, can be well described using the following spaces
with special weights.

Let ℓ be the smallest distance from one vertex in V to a disjoint edge of Ω. Define
the neighborhood of vi ∈ V, ωi := B(vi, ℓ/4), where B(vi, ℓ/4) is the ball centered
at vi with radius ℓ/4. It is clear that ωi ∩ ωj = ∅ for i ̸= j.
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Definition 3.2. (Weighted Sobolev Spaces). Let ri(x) ∈ C∞(Ω) be a smooth
function such that ri(x) = the distance from x to vi if x ∈ ωi and ri(x) = 1 outside
of B(vi, ℓ/2). Let µ⃗ := (µ1, µ2, · · · , µl) be an l-dimensional vector. For a constant
c, we denote c± µ⃗ := (c± µ1, c± µ2, · · · , c± µl). Then, we define the function

ρ(x) :=
∏

1≤i≤l

ri(x),

and its vector exponents

ρc±µ⃗(x) :=
∏

1≤i≤l

ri(x)
c±µi = ρc

∏
1≤i≤l

ri(x)
±µi .

Then, the weighted Sobolev space is

Km
µ⃗ (Ω) := {ρ|α|−µ⃗∂αv ∈ L2(Ω) for all |α| ≤ m},

with norms and semi-norms

|v|Km
µ⃗
(Ω) :=

 ∑
|α|=m

∥ρm−µ⃗∂αv∥2L2(Ω)

1/2

, ∥v∥Km
µ⃗
(Ω) :=

 ∑
|α|≤m

|v|2Km
µ⃗
(Ω)

1/2

.

Remark 3.3. Weighted spaces of this type are widely used [14, 13, 27, 26] to describe
the local property of the singular solution near the vertex set V. For example, in
the region close to the vertex vi, the weight in the space Km

µ⃗ is determined only

by the distance function ri(x) and the ith component µi of the vector µ⃗. We also
see that in a region that is away from the vertices, the Km

µ⃗ is equivalent to Hm,
because the weight is bounded above and below based on Definition 3.2. Recall the
mesh layers in Definition 2.8. Then, the function ρ satisfies

ρ(x)|Li,j ≃ κji , 0 ≤ j < n; ρ(x)|Li,n ≤ Cκni .(15)

In contrast to Proposition 3.1, we have the following full regularity estimates in
these weighted spaces [33].

Proposition 3.4. Let ϕi be the interior angle associated with the ith vertex vi and
a⃗ := (a1, a2, · · · , al). Then, for 0 ≤ ai < π/ϕi, if f ∈ Km

a⃗−1(Ω), the variational
solution of equation (1) satisfies

(16) ∥u∥Km+2
a⃗+1

(Ω) ≤ C∥f∥Km
a⃗−1

(Ω).

We shall investigate the FV approximations in the weighted space.

3.2. Interpolation error estimates. We first introduce the dilation of a function
in the neighborhood of a vertex in order to study the local behavior of the singular
solution. Recall the neighborhood ωi of the vertex vi in Definition 3.2. Let σi ⊂ ωi

be a subset. We use a new coordinate system near vi, which is a simple translation
of the old xy-coordinate system, but with vi as the new origin. Choose 0 < λ < 1,
such that on σ̂i := λ−1σi ⊂ ωi. Therefore, ρ is still the distance to vi on σ̂i. Then,
we define the dilation of a function v(x, y) as follows,

(17) v̂(x̂, ŷ) := v(x, y), ∀ (x, y) ∈ σi,

where (x̂, ŷ) := (λ−1x, λ−1y) ∈ σ̂i.
Recall the notation T = Tn for the graded mesh. In the subsequent estimates,

we shall denote by hE and hτ the length of the edge E ∈ ET ′ and the size of the
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triangle τ ∈ T , respectively. Then, we have the following dilation estimates near
the vertex in weighted spaces.

Lemma 3.5. Let E ∈ ET ′ be an interior edge in the dual mesh near the vertex vi,
and let τE ∈ T be the triangle, such that E ⊂ τE, τE ⊂ ωi. Choose λ < 1, such
that τ̂E ∈ ωi. Then, for a ∈ R+ and m ∈ Z≥0, we have

∥ρm−a∇m
(x,y)v∥L2(τE) = λ1−a∥ρm−a∇m

(x̂,ŷ)v̂∥L2(τ̂E),(18)

∥ρ1/2−a∇(x,y)v∥L2(E) = λ−a∥ρ1/2−a∇(x̂,ŷ)v̂∥L2(Ê),(19)

∥ρ−1/2+a [vT ′ ] ∥L2(E) ≤ Cλa−1/2h
1/2
E |vT ′ |T ′(E), ∀ vT ′ ∈ VT ′ ,(20)

where ∇m
(x,y) denotes the vector of all mth-order derivatives in terms of x and y;

and |vT ′ |2T ′(E) := h−1
E

∫
E
[vT ′ ]

2
ds.

Proof. Recall that ρ is the distance to vi in τE and τ̂E . Therefore, ρ(x, y) = λρ(x̂, ŷ).
Then, by (17) and the scaling argument, we first show (18) as follows.

∥ρm−a∇m
(x̂,ŷ)v̂∥

2
L2(τ̂E) =

∑
j+k=m

∫
τ̂E

|ρm−a(x̂, ŷ)∂jx̂∂
k
ŷ v̂(x̂, ŷ)|2dx̂dŷ

=
∑

j+k=m

∫
τE

|λa−mρm−a(x, y)λm∂jx∂
k
yv(x, y)|2λ−2dxdy

= λ2a−2
∑

j+k=m

∫
τE

|ρm−a(x, y)∂jx∂
k
yv(x, y)|2dxdy

= λ2a−2∥ρm−a∇m
(x,y)v∥

2
L2(τE).

We prove (19) with a similar calculation,

∥ρ1/2−a∇(x,y)v∥2L2(E) =
∑

j+k=1

∫
E

|ρ1/2−a(x, y)∂jx∂
k
yv(x, y)|2ds

=
∑

j+k=1

∫
Ê

|λ1/2−aρ1/2−a(x̂, ŷ)λ−1∂jx̂∂
k
ŷv(x̂, ŷ)|2λdŝ

= λ−2a∥ρ1/2−a∇(x̂,ŷ)v̂∥2L2(Ê)
.

For (20), recall that [vT ′ ] is constant on E. Then, by the scaling argument, we
first have

∥ρ−1/2+a [vT ′ ] ∥2L2(E) = λ2a
∫
Ê

|ρ−1/2+a(x̂, ŷ) [vT ′ ] |2dŝ.

Note that both (
∫
Ê
|ρ−1/2+a [vT ′ ] |2dŝ)1/2 and (

∫
Ê
| [vT ′ ] |2dŝ)1/2 are norms of [vT ′ ].

By the norm equivalence on finite dimensional spaces and the scaling argument, we
have

∥ρ−1/2+a [vT ′ ] ∥2L2(E) ≤ Cλ2a
∫
Ê

| [vT ′ ] |2dŝ

= Cλ2a−1

∫
E

| [vT ′ ] |2ds = Cλ2a−1hE |vT ′ |2T ′(E).

This completes the proof for (20). �
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Recall the mesh layers in Definition 2.8 and that k = 1, 2, is the degree of
polynomials on each τ ∈ T for the trial space (4). Recall that ϕi is the interior
angle of Ω at vi and recall the grading parameter κi = 2−1/ci , 0 < ci ≤ 1. For
w ∈ Kk+1

a⃗+1(Ω), let wI ∈ UT be its nodal interpolation, where a⃗ = (a1, a2, . . . , al),
ai ≥ 0. This makes sense since by the Sobolev embedding Theorem, w is continuous
on any interior sub-region that is away from the vertices. Then, we have the local
interpolation error estimate in the weighted space.

Theorem 3.6. Suppose w ∈ Kk+1
a⃗+1(Ω), for 0 < ai <

π
ϕi
. Choose the grading

parameter κ⃗ in (12), such that 0 < ci ≤ ai for k = 1, and 0 < ci ≤ ai/2 for k = 2.
Let N := dim(UT ) ≃ 4n. Then, for any τ ∈ T , we have

∥w − wI∥H1(τ) ≤ CN−k/2∥w∥Kk+1
a⃗+1

(τ).(21)

In addition, for τ ⊂ Li,n,

hciτ ∥ρ−ci∇(w − wI)∥L2(τ) ≤ CN−k/2∥w∥Kk+1
a⃗+1

(τ),(22)

hciτ ∥ρ1−ci∇2(w − wI)∥L2(τ) ≤ CN−k/2∥w∥Kk+1
a⃗+1

(τ).(23)

Proof. We first consider the case τ ̸⊂ Ln. Note that for τ ⊂ Ω0, (21) is an immediate
consequence of the usual interpolation error estimate in usual Sobolev spaces, (14),
and the fact ρ = O(1). For τ ⊂ Li,j , j < n, by (15), we have w ∈ Hk+1(τ) and

ρ ≃ κji . Therefore, by the usual interpolation error estimate, (13), and (12), we
have

∥w − wI∥H1(τ) ≤ Chkτ |w|Hk+1(τ) ≤ C2−nk∥κjki 2jk∇k+1w∥L2(τ)

≤ CN−k/2∥ρk−ai∇k+1w∥L2(τ) ≤ CN−k/2∥w∥Kk+1
a⃗+1

(τ).(24)

For estimates on τ ⊂ Li,n, we introduce χ, a smooth cutoff function on τ such
that χ = 0 in a neighborhood of vi and = 1 at every other node of τ . Therefore,

wI = (χw)I .(25)

Apply the dilation in (17) to τ . Choose λ ≃ hτ , such that ρ is still the distance to
vi on τ̂ . Define v̂ := ŵ − χ̂ŵ. Then, for β = 0 or ci, we have,

∥ρ−β∇(ŵ − ŵI)∥L2(τ̂) = ∥ρ−β∇(v̂ + χ̂ŵ − ŵI)∥L2(τ̂)

≤ ∥ρ−β∇v̂∥L2(τ̂) + ∥ρ−β∇(χ̂ŵ − ŵI)∥L2(τ̂).(26)

Similarly, we have

(27) ∥ρ1−ci∇2(ŵ − ŵI)∥L2(τ̂) ≤ ∥ρ1−ci∇2v̂∥L2(τ̂) + ∥ρ1−ci∇2(χ̂ŵ − ŵI)∥L2(τ̂).

Let b⃗ be an l-dimensional vector, such at bj = aj for 1 ≤ j ≤ l, j ̸= i. We
shall choose different values for bi in the subsequent estimates. For bi = β, since
χ̂ ∈ C∞(τ̂) and vanishes near vi, we have

(28) ∥ρ−β∇v̂∥L2(τ̂) ≤ ∥v̂∥Kk+1

b⃗+1
(τ̂) ≤ ∥ŵ∥Kk+1

b⃗+1
(τ̂) + ∥χ̂ŵ∥Kk+1

b⃗+1
(τ̂) ≤ C∥ŵ∥Kk+1

b⃗+1
(τ̂),

where C depends on the shape of τ̂ through χ̂. Following the same procedure, for
bi = ci, we also have

∥ρ1−ci∇2v̂∥L2(τ̂) ≤ C∥ŵ∥Kk+1

b⃗+1
(τ̂).(29)
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Then, using (18), (26), (28), (25), and the usual interpolation error estimate, for
τ ∈ Li,n and bi = β, we have

∥ρ−β∇(w − wI)∥L2(τ) ≤ Ch−β
τ ∥ρ−β∇(ŵ − ŵI)∥L2(τ̂)

≤ Ch−β
τ (∥ŵ∥Kk+1

b⃗+1
(τ̂) + ∥ρ−β∇(χ̂ŵ − (χ̂ŵ)I)∥L2(τ̂))

≤ Ch−β
τ (∥ŵ∥Kk+1

b⃗+1
(τ̂) + ∥∇(χ̂ŵ − (χ̂ŵ)I)∥L2(τ̂))

≤ Ch−β
τ (∥ŵ∥Kk+1

b⃗+1
(τ̂) + ∥χ̂ŵ∥Hk+1(τ̂))

≤ Ch−β
τ ∥ŵ∥Kk+1

b⃗+1
(τ̂) ≤ C∥w∥Kk+1

b⃗+1
(τ).(30)

Using (18), (27), (29), for bi = ci, a similar calculation leads to the following
estimates.

∥ρ1−ci∇2(w − wI)∥L2(τ) ≤ Ch−ci
τ ∥ρ1−ci∇2(ŵ − ŵI)∥L2(τ̂)

≤ Ch−ci
τ (∥ŵ∥Kk+1

b⃗+1
(τ̂) + ∥ρ1−ci∇2(χ̂ŵ − (χ̂ŵ)I)∥L2(τ̂))

≤ Ch−ci
τ (∥ŵ∥Kk+1

b⃗+1
(τ̂) + ∥∇2(χ̂ŵ − (χ̂ŵ)I)∥L2(τ̂))

≤ Ch−ci
τ (∥ŵ∥Kk+1

b⃗+1
(τ̂) + ∥χ̂ŵ∥Hk+1(τ̂))

≤ Ch−ci
τ ∥ŵ∥Kk+1

b⃗+1
(τ̂) ≤ C∥w∥Kk+1

b⃗+1
(τ).(31)

Recall from (13) hτ ≃ κni = 2−n/ci . Therefore, in the case bi = β = 0, for τ ⊂ Li,n,
by (30), we have

∥∇(w − wI)∥L2(τ) ≤ C∥w∥Kk+1

b⃗+1
(τ) ≤ Chai

τ ∥w∥Kk+1
a⃗+1

(τ) ≤ CN−k/2∥w∥Kk+1
a⃗+1

(τ).

This together with (24) proves (21).
In the case bi = β = ci, for τ ⊂ Li,n, by (30), we have

hciτ ∥ρ−ci∇(w − wI)∥L2(τ) ≤ Chciτ ∥w∥Kk+1

b⃗+1
(τ)

≤ Chkciτ ∥w∥Kk+1
a⃗+1

(τ) ≤ CN−k/2∥w∥Kk+1
a⃗+1

(τ).

This proves (22).
By (31) and bi = ci, we have

hciτ ∥ρ1−ci∇2(w − wI)∥L2(τ) ≤ Chciτ ∥w∥Kk+1

b⃗+1
(τ)

≤ Chkciτ ∥w∥Kk+1
a⃗+1

(τ) ≤ CN−k/2∥w∥Kk+1
a⃗+1

(τ).

This proves (23). �

3.3. Continuity of the FV bilinear form in weighted spaces. Recall that
for any w ∈ K2

a⃗+1(Ω), w ∈ H2(G) for any region G that is away from the vertex
set V. Then, we study the continuity of the bilinear form aT (·, ·) in (10) in order
to analyze the convergence of the FVM on graded meshes.

Lemma 3.7. For an edge E ∈ ET ′ , let τE ∈ T be the triangle, such that E ⊂ τE.
Then, for any w ∈ H2(τE), we have

(32) sup

∫
E

∇w · nE [vT ′ ] ds ≤ C(∥∇w∥L2(τE) + hE |∇2w|L2(τE))|vT ′ |T ′(E),
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where |vT ′ |T ′(E) := h
−1/2
E (

∫
E
[vT ′ ]2ds)1/2; and if τE ∩ vi ̸= ∅ and w ∈ K2

a⃗+1(τE),
ai > 0, then we have

sup

∫
E

∇w · nE [vT ′ ] ds ≤ Chai

E (∥ρ−ai∇w∥L2(τE)(33)

+∥ρ1−ai∇2w∥L2(τE))|vT ′ |T ′(E).

Proof. (32) can be proved by Hölder’s inequality and the trace estimate,∫
E

|∇w · nE [vT ′ ] |ds ≤ ∥∇w∥L2(E)∥ [vT ′ ] ∥L2(E)

≤ C(h
−1/2
E ∥∇w∥L2(τE) + h

1/2
E ∥∇2w∥L2(τE))h

1/2
E |vT ′ |T ′(E)

≤ C(∥∇w∥L2(τE) + hE |∇2w|L2(τE))|vT ′ |T ′(E).

If τE ∩ vi ̸= ∅, recall any edge E ∈ ET ′ does not touch the vertex set V. Let
τ ′E ∈ T ′ be the control volume such that E ⊂ ∂τ ′E and τ ′E is associated with an
interior node of the triangulation T . Denote by I := τE ∩ τ ′E the intersection.
Therefore, ρ(x) ≃ hE for any x ∈ I. We choose λ ≃ hE in (17), such that τ̂E ⊂ ωi

has diameter O(1). Then, by Hölder’s inequality, (19), (20), the trace estimate,
and (18), we have∫

E

|∇w · nE [vT ′ ] |ds ≤ ∥ρ1/2∇w∥L2(E)∥ρ−1/2 [vT ′ ] ∥L2(E)

≤ C∥∇(x̂,ŷ)ŵ∥L2(Ê)|vT ′ |T ′(E)

≤ C(∥∇(x̂,ŷ)ŵ∥L2(Î) + ∥∇2
(x̂,ŷ)ŵ∥L2(Î))|vT ′ |T ′(E)

≤ Chai

E (∥ρ−ai∇w∥L2(I) + ∥ρ1−ai∇2w∥L2(I))|vT ′ |T ′(E)

≤ Chai

E (∥ρ−ai∇w∥L2(τE) + ∥ρ1−ai∇2w∥L2(τE))|vT ′ |T ′(E).

This completes the proof for (33). �

Then, we have the following upper bound for the bilinear form aT (·, ·).

Lemma 3.8. For the graded mesh T := Tn, recall the grading parameter κi =
2−1/ci for 0 < ci ≤ 1 in (12) and the mesh layer in Definition 2.8. Let c⃗ :=
(c1, c2, · · · , cl). Define

R2(w) :=
∑

τ∈T ,τ ̸⊂Ln

(∥∇w∥2L2(τ) +N−1∥ρ1−c⃗∇2w∥2L2(τ))

and

S2(w) :=
∑

1≤i≤l

∑
(τ∈T ,τ⊂Li,n)

h2ciτ (∥ρ−ci∇w∥2L2(τ) + ∥ρ1−ci∇2w∥2L2(τ)).

Then, for w ∈ K2
c⃗+1(Ω), we have

aT (w, vT ′) ≤ C|vT ′ |T ′
(
S2(w) +R2(w)

)1/2
,(34)

where |vT ′ |T ′ is the norm defined in (8).
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Proof. For w ∈ K2
c⃗+1(Ω), based on the definition of the weighted space, w ∈ H2(τ)

for τ ∈ T and τ ̸⊂ Ln. Then, by the Cauchy-Schwarz inequality and Lemma 3.7,
we first have

aT (w, vT ′) ≤ C|vT ′ |T ′
(
S2(w) +

∑
τ ̸⊂Ln

(∥∇w∥2L2(τ) + h2τ∥∇2w∥2L2(τ))
)1/2

.

Therefore, to prove (34), it is sufficient to show for any τ ̸⊂ Ln

(35) h2τ∥∇2w∥2L2(τ) ≤ CN−1∥ρ1−c⃗∇2w∥2L2(τ).

Suppose τ ⊂ Li,j , 0 ≤ j < n. Then by (13) and (15), h2τ ≃ κ2ji 22j−2n and ρ ≃ κji
on τ . Thus, by (12), we have

h2τ∥∇2w∥2L2(τ) ≤ C2−2n∥κji2
j∇2w∥2L2(τ) ≤ CN−1∥ρ1−ci∇2w∥2L2(τ).

If τ ⊂ Ω0 := Ω \ ∪iTi,0, we have hτ ≃ 2−n ≃ N−1/2 and ρ(x) = O(1) for x ∈ τ .
Then, (35) is proved by a straightforward calculation. �

3.4. Convergence estimates for FVMs. We are now ready to provide the error
analysis for the linear and quadratic FVMs on graded meshes. We first present our
error estimate in the H1-norm.

Theorem 3.9. Suppose f ∈ Kk−1
a⃗−1(Ω) in equation (1), k = 1, 2, where 0 < ai <

π/ϕi. Choose the grading parameter κi = 2−1/ci , 0 < ci ≤ 1, such that 0 < ci ≤ ai
for k = 1 and 0 < ci ≤ ai/2 for k = 2. Then, the FV solution uT ∈ UT (9) satisfies

(36) ∥u− uT ∥H1(Ω) ≤ CN−k/2∥f∥Kk−1
a⃗−1

(Ω),

where N ≃ 4n is the dimension of the trial space.

Proof. Given f ∈ Kk−1
a⃗−1(Ω), by the regularity estimate (16), u ∈ Kk+1

a⃗+1(Ω). Let
uI ∈ UT be the nodal interpolation of u. Then,

∥u− uT ∥H1(Ω) ≤ ∥u− uI∥H1(Ω) + ∥uT − uI∥H1(Ω).(37)

By (11), (9), (10), and Lemma 3.8,

∥uT − uI∥H1(Ω) ≤ C sup
VT ′∋vT ′ ̸=0

aT (uT − uI , vT ′)

|vT ′ |T ′

= C sup
VT ′∋vT ′ ̸=0

aT (u− uI , vT ′)

|vT ′ |T ′

≤ C
(
R2(u− uI) + S2(u− uI)

)1/2
.(38)

Note that for k = 1 and τ ̸⊂ Ln,

N−1∥ρ1−c⃗∇2(u− uI)∥2L2(τ) ≤ CN−1∥u∥K2
c⃗+1

(τ) ≤ CN−1∥u∥K2
a⃗+1

(τ).

This, together with (37), (38), Lemma 3.8, Theorem 3.6, and Proposition 3.4 com-
pletes the proof of (36) for the case k = 1.

For k = 2 and τ ̸⊂ Ln, suppose τ ⊂ Li,j , 0 ≤ j < n. Therefore, ρ|τ ≃ κji . By
the usual interpolation error estimate, (12), (13), and the definition of the weighted
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space, we have

N−1∥ρ1−c⃗∇2(u− uI)∥2L2(τ) ≤ CN−1κ
2j(1−ci)
i ∥∇2(u− uI)∥2L2(τ)

≤ CN−1h2τκ
2j(1−ci)
i |u|2H3(τ) ≤ CN−1h2τκ

j(2ci−2)
i ∥ρ2−2ci∇3u∥2L2(τ)

≤ CN−1κ2ji 22j−2nκ
j(2ci−2)
i ∥u∥2K3

2c⃗+1
(τ) ≤ CN−2∥u∥2K3

a⃗+1
(τ).

If τ ⊂ Ω0, a straightforward calculation shows

N−1∥ρ1−c⃗∇2(u− uI)∥2L2(τ) ≤ CN−2∥u∥2K3
a⃗+1

(τ).

This, together with (37), (38), Lemma 3.8, Theorem 3.6, and Proposition 3.4 com-
pletes the proof of (36) for the case k = 2. �

Remark 3.10. In Theorem 3.9, we provide the selection criteria for the grading
parameter κ⃗, such that the associated (linear and quadratic) FVMs approximate
the singular solutions in the H1-norm with the optimal convergence rate. The
ingredients for the analysis include the stability of the FV bilinear form (Theorem
2.4), the continuity estimates (Lemma 3.8), and the interpolation error estimates
(Theorem 3.6). These results extend to more general equations in the divergence
form

−∇ · (A∇u) = f in Ω,

provided that the function A is sufficiently smooth and appropriate boundary condi-
tions are presented. Note that for boundary conditions different from the Dirichlet
condition, new weighted spaces need to be introduced for the well-posedness and
regularity of the singular solution [33]. This, however, will not affect our local in-
terpolation estimates. Therefore, we expect similar results for these problems. In
addition, given the stability of the scheme, these analytical tools can apply to other
high order FVMs.

We further have the optimal L2 error estimate for a linear FVM.

Corollary 3.11. Suppose f ∈ K1
a⃗−1(Ω), 0 < ai ≤ 1 and 0 < ai < π/ϕi. Choose

the parameter c⃗ as in Theorem 3.9 for k = 1. In the linear FVM, suppose the
barycenter of each triangle and the midpoint of each edge are chosen to construct
the control volume. Then, we have the following L2 estimate on the graded mesh

∥u− uT ∥L2(Ω) ≤ CN−1∥f∥K1
a⃗−1

(Ω).

Proof. Consider the following auxiliary equation

−∆ψ = u− uT in Ω, ψ = 0 on ∂Ω.(39)

Let ψI ∈ UT be the usual nodal interpolation of ψ. Let ψI′ ∈ VT ′ be such that
ψI′(p) = ψI(p) for any node p of the triangulation. Then, a direct calculation shows
[10] ∫

τ

(ψI − ψI′)dx = 0, ∀ τ ∈ T ,(40) ∫
e

(ψI − ψI′)ds = 0, for any edge e of τ ∈ T .(41)
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Note

∥u− uT ∥2L2(Ω) =

∫
Ω

∇ψ · ∇(u− uT )dx

=

∫
Ω

∇(ψ − ψI) · ∇(u− uT )dx+

∫
Ω

∇ψI · ∇(u− uT )dx.(42)

By (2) and (9), we have∫
Ω

∇ψI · ∇(u− uT )dx =

∫
Ω

f(ψI − ψI′)dx+

∫
Ω

fψI′dx−
∫
Ω

∇uT · ∇ψIdx

=

∫
Ω

f(ψI − ψI′)dx−
∑

E∈ET ′

∫
E

∇uT · nE [ψI′ ]ds−
∫
Ω

∇uT · ∇ψIdx.(43)

We now analyze the first term in (43). Let fp be the piecewise constant function
such that on any τ ∈ T , fp = |τ |−1

∫
τ
f(x)dx, where |τ | is the area of the triangle τ .

Therefore, by (40), Hölder’s inequality, and the usual interpolation error estimates,
we have∫

Ω

f(ψI − ψI′)dx =
∑
τ ̸⊂Ln

∫
τ

(f − fp)(ψI − ψI′)dx+
∑
τ⊂Ln

∫
τ

f(ψI − ψI′)dx

≤ C
( ∑
τ ̸⊂Ln

h2τ |f |H1(τ)(|ψ|H1(τ) + hτ |ψ|H2(τ))(44)

+
∑
τ⊂Ln

∥ρf∥L2(τ)∥ρ−1(ψI − ψI′)∥L2(τ)

)
.

For a triangle τ ⊂ Li,j , 1 ≤ i ≤ l, 0 ≤ j < n, by (21), (13), (12), (15), (39),
Proposition 3.4, and the fact 0 < ai ≤ 1, we have

h2τ |f |H1(τ)(|ψ|H1(τ) + hτ |ψ|H2(τ))

≤ CN−1κ2ji 22j |f |H1(τ)(|ψ|H1(τ) + κji2
2j−2n|ψ|H2(τ))

≤ CN−1∥ρ2−ci∇f∥L2(τ)(∥ρ−ci∇ψ∥L2(τ) + 22j−2n∥ρ1−ci∇2ψ∥L2(τ))

≤ CN−1∥f∥K1
a⃗−1

(τ)∥ψ∥K2
a⃗+1

(τ).(45)

For τ ⊂ Ω0 = Ω \ ∪iTi,0, by hτ ≃ N−1/2 and the equivalence between the Hm

space and the Km
µ⃗ space, we have

h2τ |f |H1(τ)(|ψ|H1(τ) + hτ |ψ|H2(τ)) ≤ CN−1∥f∥K1
a⃗−1

(τ)∥ψ∥K2
a⃗+1

(τ).(46)

For τ ⊂ Li,n, 1 ≤ i ≤ l, recall that τ is decomposed into three subregions Gj ,
1 ≤ j ≤ 3, by its barycenter and midpoints of edges. On a subregion Gj that is
away from the singular vertex vi, since Gj ∩ V = ∅, by (13) and ρ ≃ κni , we have

∥ρ−1(ψI − ψI′)∥L2(Gj) ≤ Cκ−n
i hτ (|ψ|H1(Gj) + hτ |ψ|H2(Gj))

≤ CN−1/2(∥ρ−ci∇ψ∥L2(Gj) + hτκ
−n
i ∥ρ1−ci∇2ψ∥L2(Gj))

≤ CN−1/2∥ψ∥K2
a⃗+1

(τ).(47)

Now, let Gj ⊂ τ be the control volume associated with vi. Let G be the union of
all the control volumes in T ′ that are associated with the vertex vi. Recall Ti,n,
the union of all triangles in T that have vi has a vertex. Thus, it is clear that
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Gj ⊂ G ⊂ Ti,n. Since ϕI = 0 on ∂Ω, by the weighted Poincaré inequality [3, 31, 32]
and (21), we have

∥ρ−1ψI∥L2(G) ≤ C|ψI |H1(Ti,n) ≤ C(|ψ|H1(Ti,n) +N−1/2∥ψ∥K2
a⃗+1

(Ti,n)),

where C is independent of n. Recall ψI′ = 0 and ρ ≤ Cκni on G. Therefore, by
(12), we have

∥ρ−1(ψI − ψI′)∥L2(Gj) ≤ ∥ρ−1ψI∥L2(G) ≤ C(|ψ|H1(Ti,n) +N−1/2∥ψ∥K2
a⃗+1

(Ti,n))

≤ Cκncii (∥ψ∥κ1
a⃗+1

(Ti,n) + κ−nci
i N−1/2∥ψ∥K2

a⃗+1
(Ti,n))

≤ CN−1/2∥ψ∥K2
a⃗+1

(Ti,n).(48)

Meanwhile for τ ⊂ Li,n, we have

∥ρf∥L2(τ) ≤ ∥f∥K1
−1(τ)

≤ Cκncii ∥f∥K1
a⃗−1

(τ) ≤ CN−1/2∥f∥K1
a⃗−1

(τ).(49)

Thus, by (44), (45), (46), (47), (48), (49), and the Cauchy-Schwarz inequality, we
have ∫

Ω

f(ψI − ψI′)dx ≤ CN−1
( ∑

τ ̸⊂Ln

∥f∥K1
a⃗−1

(τ)∥ψ∥K2
a⃗+1

(τ)

+
∑

τ⊂Li,n,1≤i≤l

∥f∥K1
a⃗−1

(τ)∥ψ∥K2
a⃗+1

(Ti,n)

)
≤ CN−1∥f∥K1

a⃗−1
(Ω)∥ψ∥K2

a⃗+1
(Ω).(50)

Then, we analyze the last two terms in (43). Recall ψI′ is constant on each
control volume and ψI is linear on each triangle. Then, by the Green formula and
(41), we have

−
∑

E∈ET ′

∫
E

∇uT · nE [ψI′ ]ds−
∫
Ω

∇uT · ∇ψIdx

=
∑
τ∈T

∫
∂τ

∇uT · nψI′ds−
∑
τ∈T

∫
∂τ

∇uT · nψIds

=
∑
τ∈T

∫
∂τ

∇uT · n(ψI′ − ψI)ds = 0.(51)

Thus, by (42), (43), (50), (51), Theorem 3.6, Proposition 3.4, Theorem 3.9, and the
Cauchy-Schwarz inequality, we have

∥u− uT ∥2L2(Ω) ≤ C∥ψ − ψI∥H1(Ω)∥u− uT ∥H1(Ω)

+CN−1∥f∥K1
a⃗−1

(Ω)∥u− uT ∥K0
a⃗−1

(Ω)

≤ CN−1∥u− uT ∥K0
a⃗−1

(Ω)∥f∥K0
a⃗−1

(Ω) + CN−1∥f∥K1
a⃗−1

(Ω)∥u− uT ∥K0
a⃗−1

(Ω)

≤ CN−1∥f∥K1
a⃗−1

(Ω)∥u− uT ∥L2(Ω).

This completes the proof. �
Remark 3.12. The estimates in Theorem 3.9 and Corollary 3.11 hold as long as the
given function f is in the specified weighted space. In particular, for 0 < ai ≤ 1,
H1(Ω) ⊂ K1

a⃗−1(Ω). Therefore, the L
2 error analysis in Corollary 3.11 holds for any

f ∈ H1(Ω).
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Figure 5. Two computational domains: the L-shaped domain for
the first test set (left) and the quadrilateral domain for the second
test set (right).

Figure 6. Graded meshes on the L-shaped domain for linear
FVMs: T0 (left) and T3 (right), κ⃗ = (0.2, 0.5, 0.5, 0.5, 0.5, 0.5).

4. Numerical tests

We consider the following elliptic equation

−△u = f in Ω, u = g on ∂Ω(52)

on two polygonal domains (Figure 5): the L-shaped domain (∠AOB = 3π/2) and
the quadrilateral domain (∠AOB = 2π/3). In the tests below, we always let the
vertex O be the first vertex of the domain, namely, v1 = O.

Table 1. H1-norm of the errors: the linear FVMs on the L-shaped domain.

j
|u − uj |H1(Ω)

κ1=0.1 κ1=0.2 κ1=0.3 κ1=0.4 κ1=0.5
1 1.46E-01(0.93) 1.21E-01(0.98) 1.13E-01(0.98) 1.19E-01(0.91) 1.37E-01(0.77)
2 8.15E-02(0.94) 6.59E-02(0.97) 6.26E-02(0.95) 7.00E-02(0.86) 8.83E-02(0.71)
3 4.32E-02(0.97) 3.45E-02(0.98) 3.37E-02(0.94) 4.03E-02(0.84) 5.64E-02(0.68)
4 2.22E-02(0.98) 1.77E-02(0.99) 1.77E-02(0.95) 2.29E-02(0.83) 3.59E-02(0.67)
5 1.12E-02(0.99) 8.97E-03(0.99) 9.24E-03(0.95) 1.29E-02(0.84) 2.27E-02(0.66)
6 5.64E-03(1.00) 4.51E-03(0.99) 4.76E-03(0.96) 7.21E-03(0.84) 1.43E-02(0.66)
7 2.82E-03(1.00) 2.26E-03(0.99) 2.43E-03(0.97) 4.01E-03(0.85) 9.08E-03(0.66)

4.1. Linear FVMs. In the first set of tests, we solve equation (52) on the L-
shaped domain (Figure 5) using the linear FVMs associated with the barycenter
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Table 2. L2-norm of the errors: the linear FVM on the L-shaped domain.

j
∥u − uj∥L2(Ω)

κ1=0.1 κ1=0.2 κ1=0.3 κ1=0.4 κ1=0.5
1 2.51E-02(1.84) 1.61E-02(1.93) 1.29E-02(1.95) 1.41E-02(1.87) 1.98E-02(1.60)
2 7.70E-03(1.90) 4.70E-03(1.99) 3.85E-03(1.95) 4.65E-03(1.78) 7.81E-03(1.50)
3 2.14E-03(1.95) 1.27E-03(2.00) 1.08E-03(1.94) 1.49E-03(1.74) 3.05E-03(1.43)
4 5.63E-04(1.98) 3.29E-04(2.00) 2.93E-04(1.93) 4.68E-04(1.72) 1.19E-03(1.39)
5 1.43E-04(2.00) 8.37E-05(2.00) 7.79E-05(1.94) 1.45E-04(1.71) 4.66E-04(1.37)
6 3.61E-05(2.00) 2.11E-05(2.00) 2.04E-05(1.94) 4.46E-05(1.71) 1.82E-04(1.36)
7 9.05E-06(2.00) 5.28E-06(2.00) 5.29E-06(1.95) 1.36E-05(1.71) 7.18E-05(1.35)

dual mesh (Definition 2.1). We assign the exact solution

u = r
2
3 sin(

2

3
(θ − π

2
)),

where (r, θ) is the polar coordinate at the origin O = (0, 0), and f and g are obtained
from the equation and u. This solution has a typical corner singularity near the
reentrant corner at O: u ∈ H

5
3−ϵ(Ω) /∈ H2(Ω) for any ϵ > 0, and therefore the

linear FVM can not achieve the optimal convergence rate on a quasi-uniform mesh.
We implement the linear FVM on graded meshes with different grading parameters
toward the vertex O = v1. See Figure 6 for an example of the mesh refinements.
The H1-norm and L2-norm of the errors are presented in Table 1 and Table 2.
Next to the error, displayed in the parentheses is the error reduction rate that is
calculated by

log2(
∥u− uj−1∥
∥u− uj∥

),(53)

where uj is the FV solution on the mesh obtained after j refinements, and the norm
is either H1 or L2, depending on the type of convergence rate we focus on. In this
example, we have a singular corner at O with angle ϕ1 = 3π/2, while the solution
u ∈ H2 on any subregion that is away from the first vertex O. Therefore, according
to Theorem 3.9 and Corollary 3.11, we should choose the grading parameter

0 < κ1 < 2−3/2 ≈ 0.354(54)

and it is sufficient to use quasi-uniform meshes (κi = 0.5) near other corners of
the domain, in order to obtain the optimal convergence rates in the H1 and L2

norms. In the tests, we report the error reduction rates on meshes with κi = 0.5,
i = 2, 3, 4, 5, 6, but for different values of κ1. It is shown in Table 1 and Table 2
that the H1 and L2 error reduction rates are optimal (i.e., 1 and 2), respectively,
for κ1 = 0.1, 0.2, 0.3; while for κ1 = 0.4, 0.5, the convergence rates deviate from the
optimal orders. This convergence behavior clearly verifies our theory that predicts
the optimal range (54) for the grading parameter.

4.2. Quadratic element. In the second set of tests, using quadratic FVMs,
we solve equation (52) on the quadrilateral domain with vertices (0, 0), (1, 1√

3
),

(−1, 1√
3
), and (0, 1√

3
+ cot( 29π)) (Figure 5). We assign the exact solution

u = r
3
2 sin(

3

2
(θ − π

6
)),

and obtain f and g from the equation and u. The quadratic FVM is constructed
with respect to the dual mesh with α = β = 1/3 (Definition 2.2). This solution
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Figure 7. Graded meshes on the quadrilateral domain for qua-
dratic FVMs: T0 (left) and T3 (right), κ⃗ = (0.2, 0.5, 0.5, 0.5).

Table 3. H1-norm of the errors: the quadratic FVMs on the
quadrilateral domain.

j
|u − uj |H1(Ω)

κ1=0.1 κ1=0.2 κ1=0.3 κ1=0.4 κ1=0.5
1 3.66E-02(1.01) 2.51E-02(1.74) 1.93E-02(2.26) 1.93E-02(2.26) 2.35E-02(1.87)
2 1.15E-02(1.95) 7.50E-03(2.05) 5.57E-03(2.11) 5.75E-03(2.06) 8.63E-03(1.71)
3 3.36E-03(1.94) 2.03E-03(2.05) 1.50E-03(2.06) 1.65E-03(1.96) 3.10E-03(1.61)
4 9.05E-04(1.98) 5.25E-04(2.04) 3.89E-04(2.03) 4.60E-04(1.92) 1.10E-03(1.55)
5 2.33E-04(2.00) 1.33E-04(2.02) 9.91E-05(2.01) 1.26E-04(1.90) 3.92E-04(1.52)
6 5.89E-05(2.00) 3.34E-05(2.01) 2.49E-05(2.01) 3.42E-05(1.90) 1.38E-04(1.51)

has a corner singularity at O: u ∈ H
5
2−ϵ(Ω) /∈ H3(Ω) for ϵ > 0, and therefore the

quadratic FVM can not get the optimal convergence rate on quasi-uniform meshes.
Note that the solution is in H3 except for the neighborhood of the vertex v1 = O.
Thus, we shall choose quasi-uniform meshes near other corners (κi = 0.5, i = 2, 3, 4)
in the tests. Appropriate mesh grading near O, however, is necessary to improve
the convergence of the numerical solution.

In this example, we have a singular corner at O with ϕ1 = 2π/3. Therefore,
according to Theorem 3.9, we should choose the grading parameter

0 < κ1 < 2−4/3 ≈ 0.397(55)

to obtain the optimal convergence rate for the quadratic FVM. See Figure 7 for
an example of the graded mesh refinement. The H1-norm of the errors and the
convergence orders (53) are presented in Table 3. It is clear that the H1-norm error
reduction rates are 2 for κ1 = 0.1, 0.2, 0.3; while for κ1 = 0.4, 0.5, the convergence
rates deviate from the optimal orders. This again confirms our construction (55)
of optimal quadratic FVMs for singular solutions.
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