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We study the behavior of the finite element condition numbers on a class of anisotropic 
meshes. These newly-developed mesh algorithms can produce numerical approximations 
with optimal convergence to isotropic and anisotropic singular solutions of elliptic 
boundary value problems in two- and three-dimensions. Despite the simplicity and fewer 
geometric constraints in implementation, these meshes can be highly anisotropic and do 
not maintain the maximum angle condition. We formulate a unified refinement principle 
and establish sharp estimates on the growth rate of the condition numbers of the stiffness 
matrix from these meshes. These results are important for effective applications of these 
meshes and for the design of fast numerical solvers. Numerical tests validate the theoretical 
analysis.

© 2020 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Let � ⊂Rd , d = 2, 3, be a bounded polytopal domain. Namely, � is a polygon (d = 2) or a polyhedron (d = 3). Consider 
the Poisson equation with the Dirichlet boundary condition as the model problem,

−�u = f in �, u = 0 on ∂�. (1)

The solution regularity of elliptic boundary value problems highly depends on the geometry of the domain. For example, 
even if the given data f is smooth, the solution of equation (1) may have singularities near the non-smooth points (vertices 
for d = 2, and vertices and edges for d = 3) on the boundary of the domain. These singularities can severely deteriorate 
the convergence of the numerical approximation. A popular approach is to increase the mesh density near the non-smooth 
points capturing the high-frequency components of the solution. For two-dimensional (2D) elliptic problems, this approach 
has led to mesh algorithms [1,8,10,31,34,36,41] that can recover the optimal convergence of finite element methods (FEMs) 
approximating singular solutions. These 2D elements vary much in size depending on their distance to the vertices, while 
they are isotropic and shape regular, which is consistent with the behavior of the 2D corner singularity.

The situation for three-dimensional (3D) problems is much more challenging. Both the vertices and the edges of the 
domain can give rise to singularities in the solution. The 3D vertex singularity is isotropic, carrying features similar to the 
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2D vertex singularity but in a higher dimension. The 3D edge singularity shows a distinctive character: it is anisotropic – 
singular in directions orthogonal to the edge and smoother in the edge direction. According to the aspect ratio of the ele-
ment, the existing graded mesh algorithms for 3D singularities can be divided into two categories: isotropic and anisotropic. 
The isotropic meshes include most of the adaptive meshes from a-posteriori estimates [18,19,41] and the dyadic-partitioning 
meshes [2,22,35] based on a-priori analysis. These meshes are shape regular but the associated FEMs lose the optimal con-
vergence when the edge singularity is strong or when high-order FEMs are used. The anisotropic mesh algorithms include 
the one in [1,3–5] that is based on the coordinate transformation from a quasi-uniform mesh, and the one in [9,11] that 
involves extra steps for prism refinements to maintain the angle condition of the simplex. Although the FEMs obtain the 
optimal convergence on both meshes, these algorithms are complicated to implement in general polyhedral domains, and 
do not result in well-structured (nested) finite element spaces. This is largely because these algorithms have geometric 
restrictions on simplexes to keep the maximum angle condition of the mesh. Recall that the maximum angle condition is 
often a rule of thumb to start with in developing numerical schemes, and the use of meshes without the maximum angle 
condition may lead to reduced convergence to functions in the Sobolev space. See for example the works of Babuška and 
Aziz [7] and of Křížek [26]. We also mention the works [6,20,21,23,28,37–39] where other relevant 2D and 3D anisotropic 
meshes were studied for various anisotropic problems.

Recently, a set of mesh algorithms were proposed in [10,29–34] for both 2D and 3D domains. These algorithms are 
simple, explicit, and applied to general polytopal domains. Based on reclusive refinements of the initial mesh, these meshes 
give rise to finite element solutions converging to the singular solution at the optimal convergence rate. These algorithms 
merely need a reasonable initial mesh of the domain, and the resulting meshes are conformal and similar in topology and 
data structure to the quasi-uniform mesh, and therefore can potentially improve practical computations solving singular 
problems. Such flexibility also means less control on the shape regularity. Existing finite element analysis is often built 
upon the assumption of an isotropic and shape regular mesh. However, these new meshes can be highly anisotropic and 
lose the maximum angle condition. Therefore, unconventional analytical and computational tools are needed for further 
developments and to broaden the application range of these methods.

We have two main tasks in this paper. 1. We formulate a refinement principle that will cover a wide range of 2D and 
3D graded mesh algorithms in a unified frame work. This meshing principle is of interest itself, giving rise to not only the 
aforementioned 2D isotropic meshes [1,10,31] for corner singularities and the 3D anisotropic meshes [30,32,33], but also 2D 
anisotropic meshes for degenerate elliptic problems [29]. Due to the possible lack of the maximum angle condition, we shall 
hereafter refer to these meshes as no-maximum-angle-condition (NoMAC) meshes. 2. We study the condition numbers of 
FEMs on 2D and 3D NoMAC meshes. The conditioning of the numerical scheme is instructional in effective implementations 
of the algorithm, and in design of fast matrix solvers for the discrete system. Most of the existing conditioning estimates 
are for shape regular meshes. We here summarize some well-known results [12,15,40] that are relevant to this paper. On a 
shape regular mesh, let N be the dimension of the finite element space and let hmin be the smallest element size in the 
triangulation. Then, the condition number cond(As) of the scaled finite element stiffness matrix As satisfies{

cond(As) ≤ C N(1 + | log(Nh2
min)|) (2D case),

cond(As) ≤ C N2/3 (3D case).
(2)

In addition, we refer the readers to the following works on finite element condition numbers for other 3D graded meshes 
designed for vertex and edge singularities. For isotropic meshes near edges, see [2, Section 6]; for isotropic meshes near 
vertices and edges, see [5, Lemma 3.1 and Remark 3.2]; and for some anisotropic meshes, see [1, Section 4.3.3], where 
diagonal scaling was also discussed. All these meshes satisfy the maximum angle condition. For the anisotropic NoMAC 
meshes, we derive sharp estimates (Theorem 3.4 and Theorem 3.9) on the condition numbers in relation to the dimension 
of the discrete space and to the grading parameter of the algorithm. These new results are quite different from those 
on quasi-uniform meshes: the growth rates of the condition numbers in 2D are different for isotropic and anisotropic 
meshes; while for both isotropic and anisotropic meshes in 3D, there is a threshold value for the grading parameter, which 
determines whether the growth rate resembles the one on quasi-uniform meshes, or the growth rate is largely decided by 
the grading parameter. The main difficulty in the analysis lies in the anisotropic nature of the elements. The usual procedure 
in [12] cannot produce estimates that reflect the actual behavior of the condition number on NoMAC meshes. Our analysis 
relies on new observations on the anisotropic affine mapping for NoMAC meshes and a series of estimates in weighted 
function spaces.

The rest of the paper is organized as follows. In Section 2, we present the principle and algorithms for NoMAC meshes. 
Important properties and observations on these meshes will be discussed. In Section 3, we devise analysis for the condition 
number on 2D and 3D NoMAC meshes. Due to the nature of the mesh algorithm, estimates are first obtained in local regions 
of the domain, distinguished by their distance to different parts of the boundary. The main condition number estimates are 
summarized in Theorem 3.4 (2D) and in Theorem 3.9 (3D). We report numerical test results in Section 4 from various 
sample meshes to verify the theoretical prediction.

Throughout the text below, we adopt the bold notation for vectors and matrices. Let T be a triangle (resp. tetrahe-
dron) with vertices a, b, c (resp. a, b, c, d). Then, we denote T by its vertices: �3abc for the triangle and �4abcd for the 
tetrahedron, where the sup-index implies the number of vertices for T . By a � b, we mean there exists a constant C > 0
independent of a and b, such that C−1a ≤ b ≤ Ca. In addition, by A ⊂ B , we mean A is a proper subset of B or A = B . 
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The generic constant C > 0 in our estimates may be different at different occurrences. It will depend on the computational 
domain, but not on the functions involved or the mesh level in the finite element algorithms.

2. The NoMAC mesh

2.1. The finite element method

Denote by Hm(�), m ≥ 0, the Sobolev space that consists of functions whose ith derivatives are square integrable for 
0 ≤ i ≤ m. Let L2(�) := H0(�). Recall that H1

0(�) ⊂ H1(�) is the subspace consisting of functions with zero trace on the 
boundary ∂�. The variational solution u ∈ H1

0(�) of equation (1) satisfies

a(u, v) =
∫
�

∇u · ∇vdx =
∫
�

f vdx = ( f , v), ∀v ∈ H1
0(�). (3)

Let Tn = {T�} be a triangulation of � with triangles (d = 2) or tetrahedra (d = 3). It will become clear later that the index n
represents the level of the mesh refinement. Let Sn ⊂ H1

0(�) be the Lagrange finite element space of degree k ≥ 1 associated 
with Tn . Namely,

Sn = {v ∈ C(�), v|T ∈ Pk, for any element T ∈ Tn}, (4)

where Pk is the space of polynomials of degree ≤ k. Then, the finite element solution un ∈ Sn for equation (1) is defined by

a(un, vn) = ( f , vn), ∀vn ∈ Sn. (5)

Denote by N := dim(Sn) the dimension of the finite element space. Let φi , 1 ≤ i ≤ N , be the basis function associated to the 
ith node in Tn . Then, the finite element equation (5) is equivalent to the linear system of equations

Au = f, (6)

where for 1 ≤ i, j ≤ N , A is the N × N stiffness matrix with entry aij = a(φi, φ j), the vector f = ( f1, f2, · · · , f N)T is defined 
by f i = ( f , φi), and the vector u = (u1, u2, · · · , uN)T is the collection of the unknown coefficients in the representation of 
the finite element solution un = ∑N

i=1 uiφi .
Let w ∈ Sn be a function in the finite element space (4) and let

w = (w1, w2, · · · , w N)T (7)

be the associated vector such that w = ∑N
�=1 w�φ� . Recall the l2-norm of w

‖w‖l2 = (wT w)1/2 = ( ∑
1≤�≤N

w2
�

)1/2
.

Note that by equations (3) and (5), A is a real symmetric positive definite matrix and all its eigenvalues are positive. Let

λmax = max‖w‖l2 �=0

wT Aw

wT w
, λmin = min‖w‖l2 �=0

wT Aw

wT w
(8)

be the largest and the smallest eigenvalues, respectively. Then, the l2-condition number cond(A) of the stiffness matrix is 
given by

cond(A) = λmax/λmin. (9)

It follows from a direct calculation that

wT Aw = a(w, w) = ‖∇w‖2
L2(�)

. (10)

We shall study the condition number (9) on a class of anisotropic graded meshes.

2.2. The NoMAC mesh algorithms

We here present the algorithms that cover a class of graded meshes that appeared in [1,10,14,25,29,31,30,32,33]. These 
meshes can effectively improve the finite element approximation when the solution possesses singularities in 2D and 3D, 
especially from the non-smoothness of the computational domain. Unlike the conventional shape regular grids, these algo-
rithms produce anisotropic no-maximum-angle-condition (NoMAC) meshes.

Let V (resp. E ) be the set of vertices (resp. the set of closed boundary edges) of the domain �. For each vertex v ∈ V
and each edge e ∈ E , we assign the associated grading parameter κv ∈ (0, 0.5] and κe ∈ (0, 0.5], respectively. Let T be a 
triangulation of � with triangles (d = 2) or tetrahedra (d = 3).
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Fig. 1. Singular vertices and edges: a v-singular vertex pv = v ∈ V with κv < 0.5 (left); e-singular vertices pe0, pe1, and pe2 on e ∈ E (red line segment) 
with κe < 0.5 (right). pv is a singular vertex for all the edges pv pi , 1 ≤ i ≤ 4. pe0 is a singular vertex for pe0 p1, pe1 is a singular vertex for pe1 pi , 1 ≤ i ≤ 3, 
and pe2 is a singular vertex for pe2 p3. pe0 pe1 and pe1 pe2 are singular edges. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

Fig. 2. Refinement of an edge pq (left – right): no singular vertices (midpoint); p is a singular vertex (|pr| = κp |pq|, κp < 0.5).

Definition 2.1 (Singular vertices and edges). The singular vertices and singular edges are the special vertices and edges of 
the triangles or tetrahedra in T defined as follows. Let pq be a closed edge of an element T ∈ T with p and q as the 
endpoints. We define different singular sets based on the location of the edge pq. We say pq is a singular edge if pq ⊂ e ∈ E
and κe < 0.5. Namely a singular edge in T lies on an edge e of the domain boundary for which the parameter κe < 0.5. 
We further describe two types of singular vertices. We call p a v-singular vertex if p = v ∈ V and κv < 0.5. In this case, p
is a singular vertex for all the element edges connecting to p. We call p an e-singular vertex of pq if the following three 
conditions are satisfied: 1. p is not a v-singular vertex; 2. p lies on a singular edge that belongs to e ∈ E with κe < 0.5; 3. 
pq �⊂ e. In this case, p is a singular vertex for all the element edges intersecting e at p, but is not a singular vertex for the 
singular edges on e. See Fig. 1 for examples of the singular vertices and edges.

To simplify the presentation, we require that each element in T contains at most one singular edge and at most one 
v-singular vertex; and if it contains both, the v-singular vertex is an endpoint of the singular edge. Thus, each element edge 
in the triangulation has at most one singular vertex as an endpoint. Suppose p is a singular vertex of an edge pq in the 
triangulation. Then, we assign p a grading parameter κp as follows

κp :=
{

κe, if p ∈ e ∈ E is an e-singular vertex,

mine∈Ev (κv , κe), if p = v ∈ V is an v-singular vertex,
(11)

where Ev ⊂ E is the set of edges that touch the vertex v .

The concept of singular vertices and edges shall be used to derive anisotropic mesh algorithms. In particular, the singular 
edge is useful to solve 2D anisotropic elliptic problems and 3D anisotropic edge singularities. See also Remark 2.5. According 
to Definition 2.1, each singular vertex p of an element edge is assigned a parameter κp < 0.5. Then, we describe the 
algorithm to produce new nodes on edges in the triangulation.

Algorithm 2.2 (New nodes). Let pq be an edge in the triangulation T with p and q as the endpoints. Then, in a graded 
refinement, a new node r on pq is produced according to the following conditions:

1. (Neither p or q is a singular vertex of pq.) We choose r as the midpoint (|pr| = |qr|).
2. (p is a singular vertex of pq.) We choose r such that |pr| = κp |pq|, where κp is defined in (11).

See Fig. 2 for an illustration.

Before presenting the NoMAC refinement algorithm, we note that based on the number of singular vertices and the 
number of singular edges in an element, we can classify the elements in T as follows.

Definition 2.3 (Element types). Given the conditions on the singular vertices and singular edges in Definition 2.1. Each ele-
ment T ∈ T falls into one of the five categories.

1. o-element: T̄ contains no singular vertex or singular edge.
2. v-element: T̄ contains a v-singular vertex but no singular edge.
3. ve-element: T̄ contains an e-singular vertex but no singular edge.
4. e-element: T̄ contains a singular edge but no v-singular vertex.
5. ev-element: T̄ contains a v-singular vertex and a singular edge.

Now, we give the anisotropic mesh algorithm in 2D and 3D.
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Fig. 3. Refinement of a triangle (green dot = v-singular vertex, green box = e-singular vertex, red line segment = singular edge). Top row (left – right): 
o-element, v-element, e-element. Bottom row (ev-elements, v-singular vertex x0 = v ∈V and singular edge x0x1 ⊂ e ∈ E): κe = κv (left); κe > κv (right).

Fig. 4. Refinement of a tetrahedron (green dot = v-singular vertex, green box = e-singular vertex, red line segment = singular edge). Top row (left – right): 
o-element, v-element, e-element. Bottom row (ev-elements, v-singular vertex x0 = v ∈V and singular edge x0x1 ⊂ e ∈ E): κe = κv (left); κe > κv (right).

Algorithm 2.4 (NoMAC meshes). Recall the triangulation T in Definition 2.1 and the grading parameter κp in (11) for each 
singular vertex p. Then, the graded refinement, denoted by κ(T ), proceeds as follows.

• Triangular Elements (d = 2). For each triangle T = �3x0x1x2 ∈ T , a new node is generated on each edge based on 
Algorithm 2.2. Then, T is decomposed into four small triangles by connecting these new nodes (Fig. 3).

• Tetrahedral Elements (d = 3). For each tetrahedron T = �4x0x1x2x3 ∈ T , a new node xkl is generated on each edge 
xkxl , 0 ≤ k < l ≤ 3, based on Algorithm 2.2. Connecting these new nodes xkl on all the faces of T , we obtain four 
small tetrahedra and one octahedron. The octahedron then is cut into four tetrahedra using x13 as the common vertex. 
Therefore, after one refinement, we obtain eight sub-tetrahedra for each T ∈ T denoted by their vertices (Fig. 4):
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Fig. 5. 2D graded refinements toward a vertex v , (κv = 0.2).

Fig. 6. 2D graded refinements toward an edge e, (κe = 0.2).

Fig. 7. 3D graded refinements toward a vertex v , (κv = 0.25).

�4x0x01x02x03, �4x01x1x12x13, �4x02x12x2x23, �4x03x13x23x3,

�4x01x02x03x13, �4x01x02x12x13, �4x02x03x13x23, �4x02x12x13x23.

Given an initial mesh T0 satisfying the condition in Definition 2.1, the associated family of graded meshes {Tn, n ≥ 0} is 
defined recursively Tn = κ(Tn−1). See Figs. 5 – Fig. 9 for example.

Remark 2.5. Recall the vertex singularity of equation (1) is isotropic, concentrating at the vertex of the domain; and the 
3D edge singularity is anisotropic, singular in the direction perpendicular to the edge and smoother in the edge direction 
[17,24,30,32,33]. Thus, Algorithm 2.4 is based on a simple and intuitive idea: producing the new nodes closer to the singular 
point and consequently having new elements that are small in the direction of the singularity. Note that a v-singular vertex 
is a singular node for all the connecting edges; while an e-singular vertex is a singular node only for non-singular edges. 
Algorithm 2.4 covers a variety of graded meshes in the literature. It has shown its effectiveness in approximating 2D corner 
singularities [1,10,31,34], anisotropic degenerate elliptic operators [29], and solving 3D elliptic problems with vertex and 
edges singularities [30,32,33]. The regularity of the underlying solution in general plays an important role in deciding the 
singular vertices and edges and the associated grading parameters κe and κv in order to achieve the optimal convergence 
in the numerical solution. Compared with existing meshes, this new mesh enjoys advantages in practical computing for 
being explicit, and having fewer geometric constraints. However, Algorithm 2.4 can lead to meshes without the maximum 
angle condition, especially when there are singular edges (Figs. 6, 8, and 9). This makes the analysis for this algorithm both 
technical and interesting.
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Fig. 8. 3D graded refinements toward an edge e, (κe = 0.3).

Fig. 9. 3D graded refinements toward a vertex v and its adjacent edges, (κv = κei = 0.3, 1 ≤ i ≤ 3).

2.3. Mesh layers and affine mappings

We here derive properties of the NoMAC mesh that will be useful for the analysis. Based on the distance to the vertices 
and edges of the domain, we first define different layers of the mesh.

Definition 2.6 (Mesh layers in initial v- or ve-elements). Let T(0) ∈ T0 be an initial v- or ve-element. Let T(i) ⊂ T(0) be the 
element in Ti , 0 ≤ i ≤ n, that is attached to the singular vertex of T(0) . For 0 ≤ i < n, we define the ith mesh layer of Tn on 
T(0) to be the region Lv,i := T(i) \ T(i+1); and for i = n, the nth layer is Lv,n := T(n) .

Remark 2.7. For the 2D v-element T(0) = �3x0x1x2 in Fig. 3, Lv,0 is the trapezoid x1x2x02x01. For the 3D v-element T(0) =
�4x0x1x2x3 in Fig. 4, Lv,0 is the pentahedron x01x02x03x1x2x3. In both cases (trapezoid and pentahedron) and in the text 
below, we denote a polytope by its vertices. Let κp be the grading parameter associated with the singular vertex of T(0) . 
According to Algorithm 2.4, the elements of Tn in the layer Lv,i are isotropic and shape regular with mesh size O (2i−nκ i

p).

Definition 2.8 (Mesh layers in initial e-elements). Let T(0) ∈ T0 be an initial e-element. Let Ui be the union of elements in Ti , 
0 ≤ i ≤ n, that touch the singular edge of T(0) . For 0 ≤ i < n, we define the ith mesh layer of Tn on T(0) to be the region 
Le,i := Ui \ Ui+1; and for i = n, the nth layer is Le,n := Un .

Remark 2.9. For the 2D e-element T(0) = �3x0x1x2 in Fig. 3, Le,0 is the trapezoid x0x1x12x02. For the 3D e-element T(0) =
�4x0x1x2x3 in Fig. 4, Le,0 is the pentahedron x0x02x03x1x12x13. According to Algorithm 2.4, the elements of Tn in the layer 
Le,i are anisotropic, whose largest angle in the face converges to π as n → ∞.

Definition 2.10 (Mesh layers in initial ev-elements). Let T(0) ∈ T0 be an initial ev-element. Let T(i) ⊂ T(0) be the ev-element 
in Ti , 0 ≤ i ≤ n, that is attached to the singular vertex and the singular edge of T(0) . For 0 ≤ i < n, we define the ith mesh 
layer of Tn on T(0) to be the region Lev,i := T(i) \ T(i+1); and for i = n, the nth layer is Lev,n := T(n) .

Remark 2.11. For the 2D ev-element T(0) = �3x0x1x2 in Fig. 3, Lev,0 is the trapezoid x1x2x02x01. For the 3D ev-element 
T(0) = �4x0x1x2x3 in Fig. 4, Lev,0 is the pentahedron x01x02x03x1x2x3. Although the mesh layers in initial ev-elements 
follow a similar construction as those in initial v- or ve-elements (Definition 2.6), the elements of Tn in the layer Lev,i
are anisotropic whose largest angle in the face can be arbitrarily close to π . One can compare this to the statements in 
Remarks 2.7 and 2.9.

Based on Algorithm 2.4, the refinement of an element T can result in small elements of different types. For example, for 
d = 2, after one refinement, an e-element T is decomposed into four small elements: two e-elements, one ve -element, and 
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one o-element. For d = 3, after one refinement, an e-element T is decomposed into eight small elements: two e-elements, 
two ve-elements, and four o-elements. Nevertheless, in a refinement, we call T the parent element of the small elements, 
and call each small element the child element of T .

Recall the mesh layers of the triangulation Tn in Definitions 2.6, 2.8, and 2.10. We now construct affine mappings be-
tween a region in each layer and a reference region whose shape may depend on an initial element in T0 but not on 
n.

Proposition 2.12 (Affine mappings on initial v-, ve-, and ev-elements). Let T(0) ∈ T0 be a v-, ve-, or ev-element in the initial trian-
gulation. Let κp be the grading parameter associated with the singular vertex. We use a local coordinate system such that the singular 
vertex of T(0) is the origin. Define two mappings

B(3)
v,i =

⎛
⎝κ−i

p 0 0
0 κ−i

p 0
0 0 κ−i

p

⎞
⎠ , d = 3 and B(2)

v,i =
(

κ−i
p 0
0 κ−i

p

)
, d = 2. (12)

Then, for d = 3 and 1 ≤ i < n, B(3)
v,i is a bijection between the ith layer Lv,i (or Lev,i depending on the element type of T(0)) and the 

first layer Lv,0 (or Lev,0) on T(0); for i = n, B(3)
v,n is a bijection between Lv,n (or Lev,n) and T(0) . The dilation B(2)

v,i is the 2D analogue of 
B(3)

v,i . Namely, B(2)
v,i maps the 2D ith layer to the first layer (0 ≤ i < n) or to the initial element T(0) (i = n).

Proof. See Definition 4.2 in [30] for the proof when d = 3. The 2D case is also a direct consequence of Algorithms 2.2 and 
2.4. �
Proposition 2.13 (Affine mappings on initial e-elements). Let T(0) ∈ T0 be an e-element in the initial triangulation and let κe be the 
grading parameter associated with the singular edge. Let T ′

(i+1)
∈ Ti+1 be an element, such that T ′

(i+1)
⊂ Le,i ⊂ T(0) , 0 ≤ i < n; and 

T ′
(n) ⊂ Le,n ⊂ T(0) if i = n. Then, we have two cases to consider. (I) T ′

(i+1)
is a child element of an e-element T(i) ∈ Ti for i < n or T ′

(n)

is an e-element for i = n. Then, we can choose a proper local coordinate system (where the singular edge is on the y-axis (2D) or on 
the z-axis (3D)) and a reference element T̂ whose geometry only depends on the initial element T(0), such that

B(3)
e,i =

⎛
⎝ κ−i

e 0 0
0 κ−i

e 0
b1κ

−i
e b2κ

−i
e 2i

⎞
⎠ , d = 3 and B(2)

e,i =
(

κ−i
e 0

b3κ
−i
e 2i

)
, d = 2 (13)

are bijections from T ′
(i+1)

to T̂ in 3D and 2D, respectively. (II) T ′
(i+1)

is a child element of a ve-element T(i) ∈ Ti for i < n or T ′
(n) is 

a ve-element for i = n. Let T(k) ∈ Tk, 1 ≤ k ≤ i, be the ve-element, such that T(i) ⊂ T(k) for i < n or T ′
(n) ⊂ T(k) for i = n, and T(k) ’s 

parent element T(k−1) ∈ Tk−1 is an e-element. Then, we can choose a proper local coordinate system and a reference element T̂ whose 
geometry only depends on the initial element T(0), such that the transformations

B(3)

i,k =
⎛
⎝ κ1−i

e 0 0
0 κ1−i

e 0
b1κ

1−i
e b2κ

1−i
e 2k−1κk−i

e

⎞
⎠ , d = 3 and B(2)

i,k =
(

κ1−i
e 0

b3κ
1−i
e 2k−1κk−i

e

)
, d = 2 (14)

map T ′
(i+1)

to T̂ for i < n and map T ′
(n) to T̂ for i = n in 3D and 2D, respectively. In both cases (I) and (II), |b1|, |b2|, |b3| ≤ C0 , for 

C0 > 0 depending on T(0) but not on i or k.

Proof. When d = 3, the statements for B(3)
e,i and B(3)

i,k follow from Lemma 4.15 in [30]. As revealed in Lemmas 4.13 and 4.14 of 
[30], the parameters b1 and b2 can be different for different tetrahedra, but they are uniformly bounded by a constant that 
depends on the initial tetrahedron T(0) . When d = 2, the statements for B(2)

e,i and B(2)

i,k hold since the triangles involved can 
be regarded as triangles on the faces of the tetrahedra T ′

(i+1)
and T̂ in 3D. The mappings B(2)

e,i and B(2)

i,k are the restrictions 
of B(3)

e,i and B(3)

i,k on these faces. �
3. The conditioning on NoMAC meshes

In this section, we study the condition numbers (9) of the finite element method on the NoMAC mesh. Let Tn be the 
NoMAC mesh obtained after n consecutive refinements (Algorithm 2.4) from an initial triangulation T0. Throughout this 
section, we adopt the following notation. Let w ∈ Sn and w be the function in the finite element space and its vector 
representation (7), respectively. For each element T , we shall specify a reference element T̂ and an affine mapping K : T →
T̂ , such that for any (x, y) ∈ T (d = 2) or (x, y, z) ∈ T (d = 3), (x̂, ŷ) := K(x, y) ∈ T̂ (d = 2) or (x̂, ŷ, ̂z) := K(x, y, z) ∈ T̂ (d = 3). 
In addition, for any function v on T , we define the function v̂(x̂, ŷ) := v(x, y) (d = 2) or v̂(x̂, ŷ, ̂z) := v(x, y, z) (d = 3) on T̂ .
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Recall the types of elements in Definition 2.3. Denote by Do ⊂ � the region covered by initial o-elements in T0. Similarly, 
we define D v , D ve , De , and Dev to be the regions covered by the corresponding initial elements in T0 whose type is 
indicated via the index of the region.

3.1. The 2D case

For the triangular mesh Tn , we first have the following estimates on sub-regions of � excluding the singular edges.

Lemma 3.1. Let T ∈ Tn be a triangle. Let Io be the set of indices of the nodes in Tn that belong to D̄o . Similarly, let I v and I ve be the 
sets of indices of the nodes in Tn that belong to D̄ v and D̄ ve , respectively. Then, we have

∑
T ⊂Do∪D v∪D ve

‖∇w‖2
L2(T )

≤ C
∑

�∈Io∪I v∪I ve

w2
�, (15)

∑
�∈Io

w2
� ≤ C22n

∑
T ⊂Do

‖w‖2
L2(T )

. (16)

In addition, for T ⊂ D v ∪ D ve , suppose T is in the ith mesh layer Lv,i (Definition 2.6) on an initial element, with κp as the grading 
parameter for the singular vertex. Let IT be the set of indices of the nodes in T̄ . Then, we have

∑
�∈IT

w2
� ≤ C22(n−i)κ−2i

p ‖w‖2
L2(T )

. (17)

In (15) – (17), the constant C does not depend on i or n.

Proof. We consider different cases based on the location of the triangle involved.
Note that from Algorithms 2.2 and 2.4, the mesh on Do is quasi-uniform with mesh size O (2−n), since the refinement 

is based on the usual midpoint decomposition of a triangle. For Tn � T ⊂ Do , let T̂ = T(0) be the reference triangle, where 
T(0) ∈ T0 is the initial triangle containing T . Let K : T → T̂ be the standard affine mapping [15,16]. Note that the finite 
element space defined on the reference element T̂ is finite dimensional and therefore any two norms are equivalent. We 
shall use this property multiple times in the paper and will refer to it as the norm equivalence in finite-dimensional spaces. 
Then, by the scaling argument and the norm equivalence in finite-dimensional spaces, we obtain

∑
T ⊂Do

‖∇w‖2
L2(T )

=
∑

T ⊂Do

∫
T

(∂x w)2 + (∂y w)2dxdy

≤ C
∑

T ⊂Do

∫

T̂

(∂x̂ ŵ)2 + (∂ ŷ ŵ)2dx̂d ŷ ≤ C
∑

T ⊂Do

‖ŵ‖2
L∞(T̂ )

≤ C
∑
�∈Io

w2
� . (18)

Similarly, by the scaling argument and the norm equivalence in finite-dimensional spaces, we have

∑
T ⊂Do

‖w‖2
L2(T )

=
∑

T ⊂Do

∫
T

w2dxdy = 2−2n
∑

T ⊂Do

∫

T̂

ŵ2dx̂d ŷ

≥ C2−2n
∑

T ⊂Do

‖ŵ‖2
L∞(T̂ )

≥ C2−2n
∑
�∈Io

w2
� . (19)

For a triangle T ∈ Tn in D v or in D ve , suppose T is in the ith layer of an initial triangle T(0) . As in Definition 2.6, let 
T(i) ⊂ T(0) be the element in Ti (0 ≤ i ≤ n) that touches the singular vertex of T(0) . Then, if i = n, we have T = T(n); if 
i < n, we have T ⊂ T ′

(i+1)
⊂ T(i) , where T ′

(i+1)
∈ Ti+1 is an o-element. Based on Algorithm 2.4, if i < n, T is generated after 

n − i − 1 midpoint refinements of T ′
(i+1)

. Recall from Proposition 2.12 that B(2)
v,i maps T(i) to T̂ := T(0) . Then, the mapping 

K : T → T̂ satisfies for (x, y) ∈ T and (x̂, ŷ) = K(x, y) ∈ T̂ ,

(∂x w)2 + (∂y w)2 ≤ C22(n−i)κ−2i
p

(
(∂x̂ ŵ)2 + (∂ ŷ ŵ)2) and dxdy � 22(i−n)κ2i

p dx̂d ŷ. (20)

Therefore, by (20) and the norm equivalence in finite-dimensional spaces, we have

∑
T ⊂D v∪D v

‖∇w‖2
L2(T )

=
∑

T ⊂D v∪D v

∫
(∂x w)2 + (∂y w)2dxdy
e e T
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≤ C
∑

T ⊂D v∪D ve

∫

T̂

(∂x̂ ŵ)2 + (∂ ŷ ŵ)2dx̂d ŷ ≤ C
∑

T ⊂D v∪D ve

‖ŵ‖2
L∞(T̂ )

≤ C
∑

�∈I v∪Iev

w2
� . (21)

Meanwhile, using (20) and the norm equivalence in finite-dimensional spaces, we have

‖w‖2
L2(T )

=
∫
T

w2dxdy � 22(i−n)κ2i
p

∫

T̂

ŵ2dx̂d ŷ

≥ C22(i−n)κ2i
p ‖ŵ‖2

L∞(T̂ )
≥ C22(i−n)κ2i

p

∑
�∈IT

w2
� . (22)

Hence, we have proved the estimate (15) by combining (18) and (21). The estimates (16) and (17) are due to (19) and 
(22), respectively. �

Now, we derive useful estimates in regions close to singular edges.

Lemma 3.2. Let T ∈ Tn be an triangle in De. Suppose T is in the ith mesh layer Le,i (Definition 2.8) of an initial e-element T(0) ∈ T0 , 
with κe as the grading parameter for the singular edge. Let IT be the set of indices of the nodes in T̄ . Then, we have

‖∇w‖2
L2(T )

≤ C(2κe)
−n

∑
�∈IT

w2
�, (23)

∑
�∈IT

w2
� ≤ C22(n−i)κ−2i

e ‖w‖2
L2(T )

, (24)

where C depends on T(0) but not on i or n.

Proof. Let T(i) ∈ Ti be the triangle such that T ⊂ T(i) . Then, according to Definition 2.8, T(i) is either an e-element or a 
ve-element. Based on Algorithm 2.4, if i = n, we have T = T(n) . If i < n, we have T ⊂ T ′

(i+1)
⊂ T(i) , where T ′

(i+1)
∈ Ti+1 is an 

o-element, and T is generated after n − i − 1 midpoint refinements of T ′
(i+1)

.

Case I. T(i) is an e-element in Ti (0 ≤ i ≤ n). According to the arguments above and Proposition 2.13, B(2)
e,i maps T ′

(i+1)

(i < n) or T(n) (i = n) to a reference triangle T̂ whose geometry only depends on T(0) . Then, the mapping K : T → T̂ satisfies 
for (x, y) ∈ T and (x̂, ŷ) ∈ T̂ ,

(∂x w)2 + (∂y w)2 ≤ C22(n−i)κ−2i
e

(
(∂x̂ ŵ)2 + (∂ ŷ ŵ)2) and dxdy � (2κe)

i2−2ndx̂d ŷ.

Then, by the norm equivalence in finite-dimensional spaces, we have

‖∇w‖2
L2(T )

≤ C

∫

T̂

22n(2κe)
−2i((∂x̂ ŵ)2 + (∂ ŷ ŵ)2)2i−2nκ i

edx̂d ŷ

≤ C(2κe)
−i‖ŵ‖2

L∞(T̂ )
≤ C(2κe)

−i
∑
�∈IT

w2
�. (25)

Similarly, we have

‖w‖2
L2(T )

=
∫
T

w2dxdy � 2−2n(2κe)
i
∫

T̂

ŵ2dx̂d ŷ

≥ C2−2n(2κe)
i‖ŵ‖2

L∞(T̂ )
≥ C2−2n(2κe)

i
∑
�∈IT

w2
� . (26)

Case II. T(i) is a ve-element in Ti (0 ≤ i ≤ n). Let T(k) ∈ Tk , 1 ≤ k ≤ i, be the ve-element, such that T(i) ⊂ T(k) and T(k) ’s 
parent element T(k−1) ∈ Tk−1 is an e-element. Then, according to Proposition 2.13, B(2)

i,k maps T ′
(i+1)

(i < n) or T(n) (i = n) 
to a reference triangle T̂ whose geometry only depends on T(0) . Then, the mapping K : T → T̂ satisfies for (x, y) ∈ T and 
(x̂, ŷ) ∈ T̂ ,

(∂x w)2 + (∂y w)2 ≤ C22(n−i)κ−2i
e

(
(∂x̂ ŵ)2 + (∂ ŷ ŵ)2) and dxdy � (2κe)

2i−k2−2ndx̂d ŷ.
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Then, by the norm equivalence in finite-dimensional spaces, we obtain

‖∇w‖2
L2(T )

≤ C

∫

T̂

22n−2iκ−2i
e

(
(∂x̂ ŵ)2 + (∂ ŷ ŵ)2)2−2n(2κe)

2i−kdx̂d ŷ

≤ C(2κe)
−k‖ŵ‖2

L∞(T̂ )
≤ C(2κe)

−k
∑
�∈IT

w2
� . (27)

Similarly, we have

‖w‖2
L2(T )

=
∫
T

w2dxdy � (2κe)
2i−k2−2n

∫

T̂

ŵ2dx̂d ŷ

≥ C(2κe)
2i−k2−2n‖ŵ‖2

L∞(T̂ )
≥ C(2κe)

2i−k2−2n
∑
�∈IT

w2
� . (28)

Recall k ≤ i ≤ n and κe < 0.5. Then, we obtain (23) by summing up the estimates (25) and (27) over all T ⊂ De . The 
estimate (24) is due to (26) and (28). �

Then, we give some useful estimates on regions close to both singular vertices and singular edges.

Lemma 3.3. Let T ∈ Tn be a triangle in Dev . Let Iev be the set of indices of the nodes in Tn that belong to D̄ev . Suppose T is in the 
ith mesh layer (Definition 2.10) of an initial ev-element, with κp and κe as the grading parameter for the singular vertex and for the 
singular edge, respectively. Then, we have∑

T ⊂Dev

‖∇w‖2
L2(T )

≤ C(2κe)
−n

∑
�∈Iev

w2
� . (29)

In addition, let IT be the set of indices of the nodes in T̄ . For i < n, let T ′
(i+1)

∈ Ti+1 be the triangle that contains T . Note that T ′
(i+1)

can be either an o-, ve-, or e-element. If T ′
(i+1)

is an o-element or if i = n, we have

∑
�∈IT

w2
� ≤ C22(n−i)κ−2i

p ‖w‖2
L2(T )

. (30)

If T ′
(i+1)

(i < n) is a ve- or e-element, suppose T is in the kth (k < n − i) layer (Definitions 2.6 and 2.8) of the graded triangulation on 
T ′

(i+1)
toward the singular vertex or toward the singular edge. Then, we have

∑
�∈IT

w2
� ≤ C22(n−i−k)κ−2i

p κ−2k
e ‖w‖2

L2(T )
. (31)

Proof. For a triangle T in Dev , suppose T ⊂ T(0) , where T(0) is an initial ev-element in T0. Therefore, T is either in the ith 
mesh layer Lev,i if i < n and T ⊂ T ′

(i+1)
for some T ′

(i+1)
∈ Ti+1; or T = T(n) ⊂ Lev,n .

We first consider the case when i = n, namely T = T(n) . Then, the dilation B(2)
v,n in (12) maps T to T̂ = T(0) . Using the 

same scaling argument (20) as in Lemma 3.1, we obtain

‖∇w‖2
L2(T )

≤ C
∑
�∈IT

w2
� . (32)

In addition, by the scaling argument (20) and the norm equivalence in finite-dimensional spaces, we have

‖w‖2
L2(T )

=
∫
T

w2dxdy ≥ Cκ2n
p

∫

T̂

ŵ2dx̂d ŷ

≥ Cκ2n
p ‖ŵ‖2

L∞(T̂ )
≥ Cκ2n

p

∑
�∈IT

w2
� . (33)

We now consider the case when i < n (T is in the ith mesh layer Lev,i and suppose T ⊂ T ′
(i+1)

∈ Ti+1). Note that the 
mapping B(2)

v,i in (12) translates Lev,i to Lev,0 on T(0) , and therefore translates T ′
(i+1)

to a triangle T̂(i+1) ∈ T1 in Lev,0. 
Our estimates are based on T ′

(i+1)
’s element type. (I) T ′

(i+1)
is an o-element. Based on Algorithm 2.4, T is generated after 

n − i − 1 midpoint refinements of T ′
(i+1)

. Thus, the mapping K : T → T̂ = T̂(i+1) satisfies for (x, y) ∈ T and (x̂, ŷ) ∈ T̂ the 
same condition as in (20). Following similar calculations as in (21) and (22), we therefore have



H. Li, X. Lu / Applied Numerical Mathematics 158 (2020) 22–43 33
‖∇w‖2
L2(T )

≤ C
∑
�∈IT

w2
� (34)

and

‖w‖2
L2(T )

=
∫
T

w2dxdy ≥ C22(i−n)κ2i
p

∫

T̂

ŵ2dx̂d ŷ

≥ C22(i−n)κ2i
p ‖ŵ‖2

L∞(T̂ )
≥ C22(i−n)κ2i

p

∑
�∈IT

w2
� . (35)

(II) T ′
(i+1)

is a ve-element. Let T ′ = B(2)
v,i T ⊂ T̂ = T̂(i+1) := B(2)

v,i T ′
(i+1)

∈ T1. For (x, y) ∈ T , define (x′, y′) = B(2)
v,i (x, y) and 

w ′(x′, y′) = w(x, y). Therefore, T ′ is generated after n − i − 1 graded refinements of T̂(i+1) toward the singular vertex with 
the grading parameter κe . Suppose that T ′ is in the kth (k < n − i) layer of the triangulation on the ve-element T̂(i+1) that 
is translated from Tn on T(i+1) . Then, by the calculation involved in (21) and (15), we have

‖∇w‖2
L2(T )

≤ C‖∇w ′‖2
L2(T ′) ≤ C

∑
�∈IT

w2
� . (36)

Meanwhile, following the scaling argument and by the estimate (17), we have

‖w‖2
L2(T )

=
∫
T

w2dxdy ≥ Cκ2i
p

∫
T ′

w ′2dx′dy′ ≥ Cκ2i
p κ2k

e 22(k−n+i)
∑
�∈IT

w2
� . (37)

(III) T ′
(i+1)

is an e-element. We set up the notation similar to that above. Let T ′ = B(2)
v,i T ⊂ T̂ = T̂(i+1) := B(2)

v,i T ′
(i+1)

∈ T1. For 
(x, y) ∈ T , define (x′, y′) = B(2)

v,i (x, y) and w ′(x′, y′) = w(x, y). Therefore, T ′ is generated after n − i − 1 graded refinements 
of T̂(i+1) toward the singular edge with the grading parameter κe . Suppose that T ′ is in the kth (k < n − i) layer of the 
triangulation on the e-element T̂(i+1) that is translated from Tn on T(i+1) . Then, by the calculation involved in (21) and by 
the estimate (23), we have

‖∇w‖2
L2(T )

≤ C‖∇w ′‖2
L2(T ′) ≤ C(2κe)

i−n
∑
�∈IT

w2
� ≤ C(2κe)

−n
∑
�∈IT

w2
� . (38)

Meanwhile, following the scaling argument and by the estimate (24), we have

‖w‖2
L2(T )

=
∫
T

w2dxdy = κ2i
p

∫
T ′

w ′2dx′dy′ ≥ Cκ2i
p 22(k−n+i)κ2k

e

∑
�∈IT

w2
� . (39)

Then, we obtain (29) by summing up the estimates (32), (34), (36), and (38) over all T ⊂ Dev . The estimates (30) and 
(31) are due to (33), (35), (37), and (39). �

Consequently, we have the estimate on the condition number of the finite element matrix from 2D NoMAC meshes.

Theorem 3.4. Let A be the stiffness matrix in (6) associated with the 2D NoMAC mesh Tn (Algorithm 2.4). Then, for any w ∈ Sn, we 
have

wT w ≤ C22n‖∇w‖2
L2(�)

, (40)

where w is the coefficient vector of w defined in (7). In addition, the condition number of A satisfies

cond(A) ≤ C(2κ−1)n, (41)

where κ = mine(κe, 0.5) and the minimum is taken over all the singular edges.

Proof. Recall the regions (Do , D v , D ve , De , Dev ) and the index sets (Io , I v , I ve , Ie , Iev ) from Lemmas 3.1 – 3.3. We shall 
need the following weighted Poincaré inequality (42). Let ρ(x, y) be the distance from (x, y) ∈ � to the boundary ∂�. Then, 
by Theorem 8.4 in [27], for any σ ∈ [0, 1], we have

‖∇w‖2
L2(�)

≥ C‖ρ−σ w‖2
L2(�)

≥ C
( ∑

T ⊂Do

‖w‖2
L2(T )

+
∑

T ⊂D v

‖ρ−σ w‖2
L2(T )

+
∑

T ⊂D ve

‖ρ−σ w‖2
L2(T )

+
∑

‖ρ−σ w‖2
L2(T )

+
∑

‖ρ−σ w‖2
L2(T )

)
. (42)
T ⊂De T ⊂Dev
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We estimate these terms as follows.
Let T ∈ Tn be a triangle in D v or D ve . Suppose T is in the ith layer Lv,i of an initial triangle with κp as the grading 

parameter toward the singular vertex. Let ρp(x, y) be the distance function to the singular vertex. In addition to ρ ≤ ρp , note 
that ρp � κ i

p on Lv,i for i < n and ρp ≤ Cκn
p on Lv,n . Define σp := 1 + logκp

2. It is clear that for 0 < κp < 0.5, σp ∈ (0, 1). 
Then, we can pick any σp ≤ σ ≤ 1, and by (17), we have

‖ρ−σ w‖2
L2(T )

≥ ‖ρ−σ
p w‖2

L2(T )
≥ C22(i−n)κ2i

p

∑
�∈IT

κ−2iσ
p w2

� ≥ C2−2n
∑
�∈IT

w2
� .

Combining these estimates over all the mesh layers on D v ∪ D ve , we have∑
T ⊂D v∪D D ve

‖ρ−σ w‖2
L2(T )

≥ C2−2n
∑

�∈I v∪I ve

w2
� . (43)

Then, we consider a triangle T ∈ Tn in De and suppose T is in the ith layer Le,i of an initial triangle with κe as the 
grading parameter toward the singular edge. By Definition 2.8 for the mesh layers, it can be seen that ρ � κ i

e on Le,i for 
i < n and ρ ≤ Cκn

e on Le,n . Define σe := 1 + logκe
2. Then, we have σe ∈ (0, 1). We can pick any σe ≤ σ ≤ 1, and by (24), we 

have

‖ρ−σ w‖2
L2(T )

≥ C22(i−n)κ2i
e

∑
�∈IT

κ−2iσ
e w2

� ≥ C2−2n
∑
�∈IT

w2
�.

Combining these estimates over all the mesh layers on De , we have∑
T ⊂De

‖ρ−σ w‖2
L2(T )

≥ C2−2n
∑
�∈Ie

w2
�. (44)

Now let T ∈ Tn be a triangle in Dev . Suppose T is in the ith layer Lev,i of an initial triangle with κp and κe as the grading 
parameters toward the singular vertex and toward the singular edge, respectively. Suppose T ⊂ T ′

(i+1)
∈ Ti+1 for i < n. Recall 

the distance function to the singular vertex ρp . Then, we have two cases to consider. (I) T is in Lev,n or T ′
(i+1)

is an o-

element. Note that ρp � κ i
p on Lev,i for i < n and ρp ≤ Cκn

p on Lev,n . Define σev := 1 + logκp
2. Picking any σev ≤ σ ≤ 1, by 

(30), we have

‖ρ−σ w‖2
L2(T )

≥ ‖ρ−σ
p w‖2

L2(T )
≥ C22(i−n)κ2i

p

∑
�∈IT

κ−2iσ
p w2

� ≥ C2−2n
∑
�∈IT

w2
� .

(II) T ′
(i+1)

(i < n) is a ve- or e-element. Suppose T is in the kth (k < n − i) mesh layer of the graded triangulation on T ′
(i+1)

. 
Then, based on Algorithm 2.4, on this kth layer, ρ ≤ Cκ i

pκ
k
e . Recall σev = 1 + logκp

2 and the fact κp ≤ κe . Then, for any 
σev ≤ σ ≤ 1, by (31), we have

‖ρ−σ w‖2
L2(T )

≥ C22(i+k−n)κ2i
p κ2k

e

∑
�∈IT

κ−2iσ
p κ−2kσ

e w2
� ≥ C2−2n

∑
�∈IT

w2
� .

Combining these estimates over all the mesh layers on Dev , we have∑
T ⊂Dev

‖ρ−σ w‖2
L2(T )

≥ C2−2n
∑
�∈Iev

w2
� . (45)

Recall that for all the singular vertices and singular edges, the grading parameters κp , κe ∈ (0, 0.5). Thus, we can always 
choose σ ∈ [0, 1] such that σ ≥ maxv,e(σv , σe, σev), where the maximum is taken over all the singular vertices and edges. 
Therefore, by the estimates in (42) – (45) and by (16), we obtain the estimate (40).

Meanwhile, let κ = mine(κe, 0.5), where the minimum is taken over all the singular edges. Following (15), (23), and (29), 
we have

‖∇w‖2
L2(�)

≤ C(2κ)−nwT w.

Then, by (40) and the estimate above, we derive

C2−2nwT w ≤ wT Aw = ‖∇w‖2
L2(�)

≤ C(2κ)−nwT w.

Thus, by (8) and (9), we obtain

cond(A) ≤ C(2κ−1)n,

which completes the proof. �
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Remark 3.5. It is interesting to compare Theorem 3.4 with the classical estimate on condition numbers. According to [12], 
on a 2D shape regular mesh, the condition number of the finite element stiffness matrix As of equation (1) satisfies

cond(As) ≤ C N(1 + | log(Nh2
min)|), (46)

where N is the dimension of the finite element space and hmin is the smallest element size. Note that for the finite element 
method on the 2D NoMAC mesh Tn (Algorithms 2.2 and 2.4), we have N � 4n . Therefore, the result in Theorem 3.4 implies 
the following. 1. If Tn is shape regular (namely, no singular edge is present), we have cond(A) ≤ C N . This is consistent with 
the estimate (46). Note that the isotropic 2D NoMAC mesh is a special case of the rather general “nondegenerate” mesh 
considered in [12]. It seems that through our analysis the particular geometric structure of the 2D NoMAC can be exploited 
to obtain a sharper estimate (without the log term) than that in (46), while the estimate (46) should still be valid for 
general nondegenerate meshes. 2. If Tn is anisotropic (with special refinements toward the edge), the upper bound of the 
condition number involves the edge grading parameter and is larger than the dimension N of the discrete space.

3.2. The 3D case

The estimates of the condition numbers in the 3D case follow a similar path as in the 2D case. For the tetrahedral mesh 
Tn , we shall first derive estimates on different local sub-regions depending on its relation with the singular vertices and 
singular edges. Recall that the regions Do , D v , D ve , De , and Dev are unions of initial elements in T0 whose type is indicated 
via the index of the region.

Lemma 3.6. Let T ∈ Tn be a tetrahedron. Let Io be the set of indices of the nodes in Tn that lie in D̄o. Similarly, let I v and I ve be the 
sets of indices of the nodes in Tn that lie in D̄ v and D̄ ve , respectively. Then, for T ⊂ Do, we have∑

T ⊂Do

‖∇w‖2
L2(T )

≤ C2−n
∑
�∈Io

w2
�, (47)

∑
�∈Io

w2
� ≤ C23n

∑
T ⊂Do

‖w‖2
L2(T )

. (48)

For T ⊂ D v ∪ D ve , suppose T is in the ith mesh layer (Definition 2.6) on an initial element with κp as the grading parameter toward 
the singular vertex. Let IT be the set of indices of the nodes in T̄ . Then, we have

‖∇w‖2
L2(T )

≤ C2−n(2κp)i
∑
�∈IT

w2
�, (49)

∑
�∈IT

w2
� ≤ C23(n−i)κ−3i

p ‖w‖2
L2(T )

. (50)

Proof. Note that the mesh on Do is quasi-uniform with mesh size O (2−n). For each initial tetrahedron in Do , such midpoint 
decompositions produce tetrahedra that belong to at most three similarity classes [13]. Let T̂ be the reference tetrahedron 
with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1). Let T ∈ Tn be a tetrahedron in Do and let K : T → T̂ be the standard 
affine mapping. Then, by the scaling argument and the norm equivalence in finite-dimensional spaces, we obtain

∑
T ⊂Do

‖∇w‖2
L2(T )

=
∑

T ⊂Do

∫
T

(∂x w)2 + (∂y w)2 + (∂z w)2dxdydz

≤ C2−n
∑

T ⊂Do

∫

T̂

(∂x̂ ŵ)2 + (∂ ŷ ŵ)2 + (∂ẑ ŵ)2dx̂d ŷdẑ

≤ C2−n
∑

T ⊂Do

‖ŵ‖2
L∞(T̂ )

≤ C2−n
∑
�∈Io

w2
� . (51)

Meanwhile, by the scaling argument and the norm equivalence in finite-dimensional spaces, we have

∑
T ⊂Do

‖w‖2
L2(T )

=
∑

T ⊂Do

∫
T

w2dxdydz ≥ C2−3n
∑

T ⊂Do

∫

T̂

ŵ2dx̂d ŷdẑ

≥ C2−3n
∑

T ⊂Do

‖ŵ‖2
L∞(T̂ )

≥ C2−3n
∑
�∈Io

w2
� . (52)

For a tetrahedron T in D v or in D ve , suppose T is in the ith layer of an initial tetrahedron T(0) . As in Definition 2.6, 
let T(i) ⊂ T(0) be the element in Ti (0 ≤ i ≤ n) that touches the singular vertex of T(0) . Then, if i = n, we have T = T(n); if 
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i < n, we have T ⊂ T ′
(i+1)

⊂ T(i) , where T ′
(i+1)

∈ Ti+1 is an o-element. Based on Algorithm 2.4, if i < n, T is generated after 
n − i − 1 midpoint refinements of T ′

(i+1)
. Recall from Proposition 2.12 that B(3)

v,i maps T(i) to T̂ := T(0) . Then, the mapping 
K : T → T̂ satisfies for (x, y, z) ∈ T and (x̂, ŷ, ̂z) = K(x, y, z) ∈ T̂ ,{

(∂x w)2 + (∂y w)2 + (∂z w)2 ≤ C22(n−i)κ−2i
p

(
(∂x̂ ŵ)2 + (∂ ŷ ŵ)2 + (∂ẑ ŵ)2

)
,

dxdydz � 23(i−n)κ3i
p dx̂d ŷdẑ.

(53)

Therefore, by (53) and the norm equivalence in finite-dimensional spaces, we derive

‖∇w‖2
L2(T )

=
∫
T

(∂x w)2 + (∂y w)2 + (∂z w)2dxdydz

≤ C2−n(2κp)i
∫

T̂

(∂x̂ ŵ)2 + (∂ ŷ ŵ)2 + (∂ẑ ŵ)2dx̂d ŷdẑ ≤ C2−n(2κp)i‖ŵ‖2
L∞(T̂ )

≤ C2−n(2κp)i
∑
�∈IT

w2
� . (54)

Meanwhile, using the scaling argument as in (53) and the norm equivalence in finite-dimensional spaces, we have

‖w‖2
L2(T )

=
∫
T

w2dxdydz ≥ 23(i−n)κ3i
p

∫

T̂

ŵ2dx̂d ŷdẑ

≥ C23(i−n)κ3i
p ‖ŵ‖2

L∞(T̂ )
≥ C23(i−n)κ3i

p

∑
�∈IT

w2
� . (55)

Then, we have proved the estimate (47) by (51). The estimates (48) and (50) are due to (52) and (55), respectively. The 
estimate (49) is due to (54). �

The estimates in the region close to the singular edge read as follows.

Lemma 3.7. Let T ∈ Tn be an tetrahedron in De. Let Ie be the set of indices of the nodes in Tn that lie in D̄e . In addition, suppose T is 
in the ith mesh layer (Definition 2.8) on an initial e-element with κe as the grading parameter toward the singular edge. Let IT be the 
set of indices of the nodes in T̄ . Then, we have∑

T ⊂De

‖∇w‖2
L2(T )

≤ C2−n
∑
�∈Ie

w2
�, (56)

∑
�∈IT

w2
� ≤ C23(n−i)κ−3i

e ‖w‖2
L2(T )

. (57)

Proof. Let T ⊂ De be in the ith layer of an initial e-element T(0) . Let T(i) ∈ Ti be the tetrahedron such that T ⊂ T(i) . Then, 
according to Definition 2.8, T(i) is either an e-element or a ve-element. Based on Algorithm 2.4, if i = n, we have T = T(n) . If 
i < n, we have T ⊂ T ′

(i+1)
⊂ T(i) , where T ′

(i+1)
∈ Ti+1 is an o-element, and T is generated after n − i −1 midpoint refinements 

of T ′
(i+1)

. We proceed as in the proof of Lemma 3.2 by considering the following two cases.

Case I. T(i) is an e-element in Ti . According to Proposition 2.13, B(3)
e,i maps T ′

(i+1)
(i < n) or T(n) (i = n) to a reference 

triangle T̂ whose geometry only depends on T(0) . Then, the mapping K : T → T̂ satisfies for (x, y, z) ∈ T and (x̂, ŷ, ̂z) ∈ T̂ ,
{

(∂x w)2 + (∂y w)2 + (∂z w)2 ≤ C22(n−i)κ−2i
e

(
(∂x̂ ŵ)2 + (∂ ŷ ŵ)2 + (∂ẑ ŵ)2

)
,

dxdydz � 2−3n(2κe)
2idx̂d ŷdẑ.

Let IT be the set of indices of the nodes in T̄ . Then, by the scaling argument and the norm equivalence in finite-dimensional 
spaces, we have

‖∇w‖2
L2(T )

≤ C

∫

T̂

22n(2κe)
−2i((∂x̂ ŵ)2 + (∂ ŷ ŵ)2 + (∂ẑ ŵ)2)2−3n(2κe)

2idx̂d ŷdẑ

≤ C2−n‖ŵ‖2
L∞(T̂ )

≤ C2−n
∑
�∈IT

w2
� . (58)

Meanwhile, using the scaling argument and the norm equivalence in finite dimensional spaces, we have
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‖w‖2
L2(T )

=
∫
T

w2dxdydz ≥ C2−3n(2κe)
2i

∫

T̂

ŵ2dx̂d ŷdẑ

≥ C2−3n(2κe)
2i‖ŵ‖2

L∞(T̂ )
≥ C2−3n(2κe)

2i
∑
�∈IT

w2
� . (59)

Case II. T(i) is a ve-element in Ti . Let T(k) ∈ Tk , 1 ≤ k ≤ i, be the ve-element, such that T(i) ⊂ T(k) and T(k) ’s parent 
element T(k−1) ∈ Tk−1 is an e-element. According to Proposition 2.13, B(3)

i,k maps T ′
(i+1)

(i < n) or T(n) (i = n) to a reference 
triangle T̂ whose geometry only depends on T(0) . Then, the mapping K : T → T̂ satisfies for (x, y, z) ∈ T and (x̂, ŷ, ̂z) ∈ T̂ ,{

(∂x w)2 + (∂y w)2 + (∂z w)2 ≤ C22(n−i)κ−2i
e

(
(∂x̂ ŵ)2 + (∂ ŷ ŵ)2 + (∂ẑ ŵ)2

)
,

dxdydz � 2−3n(2κe)
3i−kdx̂d ŷdẑ.

Let IT be the set of indices of the nodes in T̄ . Then, we have

‖∇w‖2
L2(T )

≤ C

∫

T̂

22n−2iκ−2i
e

(
(∂x̂ ŵ)2 + (∂ ŷ ŵ)2 + (∂ẑ ŵ)2)2−3n(2κe)

3i−kdx̂d ŷdẑ

≤ C2−n(2κe)
i−k‖ŵ‖2

L∞(T̂ )
≤ C2−n(2κe)

i−k
∑
�∈IT

w2
� . (60)

Meanwhile, using the scaling argument and the norm equivalence in finite-dimensional spaces, we have

‖w‖2
L2(T )

=
∫
T

w2dxdydz ≥ C2−3n(2κe)
3i−k

∫

T̂

ŵ2dx̂d ŷdẑ

≥ C2−3n(2κe)
3i−k‖ŵ‖2

L∞(T̂ )
≥ C2−3n(2κe)

3i−k
∑
�∈IT

w2
� . (61)

Recall k ≤ i ≤ n and κe < 0.5. Then, we obtain (56) by summing up the estimates (58) and (60) over all T ⊂ De . The 
estimate (57) is due to (59) and (61). �

Then, we present the estimates in the region that close to the singular vertex and single edge in 3D.

Lemma 3.8. Let T ∈ Tn be a tetrahedron in Dev . Let Iev be the set of indices of the nodes in Tn that lie in D̄ev . Let IT be the set of 
indices of the nodes in T̄ . Then, we have∑

T ⊂Dev

‖∇w‖2
L2(T )

≤ C2−n
∑
�∈Iev

w2
� . (62)

In addition, suppose T is in the ith mesh layer (Definition 2.10) of an initial ev-element, with κp and κe as the grading parameter for 
the singular vertex and for the singular edge, respectively. For i < n, let T ′

(i+1)
∈ Ti+1 be the tetrahedron that contains T . Then, if T ′

(i+1)

is an o-element or if i = n, we have∑
�∈IT

w2
� ≤ C23(n−i)κ−3i

p ‖w‖2
L2(T )

. (63)

If T ′
(i+1)

(i < n) is a ve- or e-element, suppose T is in the kth (k < n − i) layer (Definitions 2.6 and 2.8) of the graded triangulation on 
T ′

(i+1)
toward the singular vertex or toward the singular edge. Then, we have

∑
�∈IT

w2
� ≤ C23(n−i−k)κ−3i

p κ−3k
e ‖w‖2

L2(T )
. (64)

Proof. For a tetrahedron T in Dev , suppose T ⊂ T(0) , where T(0) is an initial ev-element in T0 with singular vertex v and 
e. Therefore, T is either in the ith mesh layer Lev,i if i < n and T ⊂ T ′

(i+1)
for some T ′

(i+1)
∈ Ti+1; or T = T(n) ⊂ Lev,n .

We first consider the case when i = n, namely T = T(n) . Then, the dilation B(3)
v,n in (12) maps T to T̂ = T(0) . Therefore, 

using the same arguments as in Lemma 3.6 (see also (49) and (50)), we have

‖∇w‖2
L2(T )

≤ Cκn
p

∑
�∈IT

w2
�, (65)

∑
w2

� ≤ Cκ−3n
p ‖w‖2

L2(T )
. (66)
�∈IT
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We now consider the case when i < n (T is in the ith mesh layer Lev,i and suppose T ⊂ T ′
(i+1)

∈ Ti+1). Then, the mapping 
B(3)

v,i in (12) translates Lv,i to Lv,0 on T(0) , and therefore translates T ′
(i+1)

to a tetrahedron T̂ ′
(i+1)

∈ T1 in Lv,0. We formulate 
the estimate based on T ′

(i+1)
’s element type. (I) T ′

(i+1)
is an o-element. Based on Algorithm 2.4, T is generated after n − i −1

midpoint refinements of T ′
(i+1)

. Thus, the mapping K : T → T̂ = T̂ ′
(i+1)

satisfies for (x, y, z) ∈ T and (x̂, ŷ, ̂z) ∈ T̂ the same 
condition as in (53). Following similar calculations as in (54) and (55), we therefore have

‖∇w‖2
L2(T )

≤ C2−n(2κp)i
∑
�∈IT

w2
�, (67)

‖w‖2
L2(T )

≥ C23(i−n)κ3i
p

∑
�∈IT

w2
� . (68)

(II) T ′
(i+1)

is a ve-element. Let T ′ = B(3)
v,i T ⊂ T̂ = T̂ ′

(i+1)
∈ T1. For (x, y, z) ∈ T , define (x′, y′, z′) = B(3)

v,i (x, y, z) and 
w ′(x′, y′, z′) = w(x, y, z). Therefore, T ′ is generated after n − i − 1 graded refinements of T̂ ′

(i+1)
toward the singular vertex 

with the grading parameter κe . Suppose that T ′ is in the kth (k < n − i) layer of the triangulation on the ve-element T̂ ′
(i+1)

that is translated from Tn on T ′
(i+1)

. Then, by the calculation involved in (54) and (49), we have

‖∇w‖2
L2(T )

≤ C2−n(2κp)i‖∇w ′‖2
L2(T ′) ≤ C2−n(2κp)i2i−n(2κe)

k
∑
�∈IT

w2
� . (69)

Meanwhile, following the scaling argument, the estimate (50), we have

‖w‖2
L2(T )

=
∫
T

w2dxdydz = κ3i
p

∫
T ′

w ′2dx′dy′dz′ ≥ Cκ3i
p 23(k−n+i)κ3k

e

∑
�∈IT

w2
� . (70)

(III) T ′
(i+1)

is an e-element. Let T ′ = B(3)
v,i T ⊂ T̂ = T̂ ′

(i+1)
∈ T1. For (x, y, z) ∈ T , define (x′, y′, z′) = B(3)

v,i (x, y, z) and 
w ′(x′, y′, z′) = w(x, y, z). Therefore, T ′ is generated after n − i − 1 graded refinements of T̂ ′

(i+1)
toward the singular edge 

with the grading parameter κe . Suppose that T ′ is in the kth (k < n − i) layer of the triangulation on the e-element T̂ ′
(i+1)

that is translated from Tn on T ′
(i+1)

. Then, by the calculation involved in (54) and the estimates (58) and (60), we have

‖∇w‖2
L2(T )

≤ C2−n(2κp)i‖∇w ′‖2
L2(T ′) ≤ C22(i−n)κ i

p

∑
�∈IT

w2
� . (71)

Meanwhile, following the scaling argument, the estimate (50), and the estimate (57), we have

‖w‖2
L2(T )

=
∫
T

w2dxdydz = κ3i
p

∫
T ′

w ′2dx′dy′dz′ ≥ Cκ3i
p 23(k−n+i)κ3k

e

∑
�∈IT

w2
� . (72)

Then, we obtain (62) by summing up the estimates (65), (67), (69), and (71) over all T ⊂ Dev . The estimates (63) and 
(64) are due to (66), (68), (70), and (72). �

We now have the estimates on the condition number of the finite element method on Tn .

Theorem 3.9. Let A be the stiffness matrix in (6) associated with the 3D NoMAC mesh Tn (Algorithm 2.4). Let κ = minv,e(κv , κe, 0.5), 
where the minimum is taken over all the singular vertices and singular edges. Then, for any w ∈ Sn, we have

wT w ≤ C‖∇w‖2
L2(�)

({
23n for κ ≥ 0.125
κ−n for 0 < κ < 0.125

)
, (73)

where w is the coefficient vector of w defined in (7). In addition, the condition number of A satisfies

cond(A) ≤
{

C22n for κ ≥ 0.125
C(2κ)−n for 0 < κ < 0.125.

(74)

Proof. Recall the regions (Do , D v , D ve , De , Dev ) and the index sets (Io , I v , I ve , Ie , Iev ) from Lemmas 3.6 – 3.8. Let ρ(x, y, z)
be the distance from (x, y, z) ∈ � to the boundary ∂�. Then, by Theorem 8.4 in [27], we have the weighted Poincaré 
inequality
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‖∇w‖2
L2(�)

≥ C‖ρ−1 w‖2
L2(�)

≥ C
( ∑

T ⊂Do

‖w‖2
L2(T )

+
∑

T ⊂D v

‖ρ−1 w‖2
L2(T )

+
∑

T ⊂D ve

‖ρ−1 w‖2
L2(T )

+
∑

T ⊂De

‖ρ−1 w‖2
L2(T )

+
∑

T ⊂Dev

‖ρ−1 w‖2
L2(T )

)
. (75)

We shall estimate these terms in the corresponding regions.
Let T ∈ Tn be a tetrahedron in D v or in D ve . Suppose T is in the ith layer Lv,i of an initial tetrahedron with κp as the 

grading parameter to the singular vertex. Note that ρ � κ i
p on Lv,i for i < n and ρ ≤ Cκn

p on Lv,n . Then, by (50), we have

‖ρ−1 w‖2
L2(T )

≥ C2−3n23iκ
(3−2)i
p

∑
�∈IT

w2
� ≥ C2−3n23iκ i

p

∑
�∈IT

w2
� . (76)

Consider a tetrahedron T ∈ Tn in De and suppose T is in the ith layer Le,i of an initial tetrahedron with κe as the grading 
parameter to the singular edge. Note that ρ � κ i

e on Le,i for i < n and ρ ≤ Cκn
e on Le,n . Then by (57), we have

‖ρ−1 w‖2
L2(T )

≥ C2−3n23iκ
(3−2)i
e

∑
�∈IT

w2
� ≥ C2−3n23iκ i

e

∑
�∈IT

w2
� . (77)

Now let T ∈ Tn be a tetrahedron in Dev . Suppose T is in the ith layer Lev,i of an initial tetrahedron with κp and κe

as the parameters to the singular vertex and the singular edge. Suppose T ⊂ T ′
(i+1)

∈ Ti+1 if i < n. Let ρp be the distance 
function to the singular vertex. It is clear that ρ ≤ ρp . Then, we have two cases to consider. (I) T is in Lev,n or T ′

(i+1)
is an 

o-element. Note that ρp � κ i
p on Lev,i for i < n and ρp ≤ Cκn

p on Lev,n . Then, by (63), we have

‖ρ−1 w‖2
L2(T )

≥ ‖ρ−1
p w‖2

L2(T )
≥ C2−3n23iκ

(3−2)i
p

∑
�∈IT

w2
� ≥ C2−3n23iκ i

p

∑
�∈IT

w2
� . (78)

(II) T ′
(i+1)

(i < n) is a ve- or e-element. Suppose T is in the kth (k < n − i) mesh layer of the graded triangulation on T ′
(i+1)

. 
Then, on this kth layer, ρ ≤ Cκ i

pκ
k
e . Recall κp ≤ κe . Then, by (64), we have

‖ρ−1 w‖2
L2(T )

≥ C2−3n23(i+k)κ
(3−2)i
p κ

(3−2)k
e

∑
�∈IT

w2
� ≥ C2−3n23(i+k)κ i

pκ
k
e

∑
�∈IT

w2
� . (79)

Recall the definition of κp in (11). Let N be the dimension of the finite element space. Then, for κ = minv,e(κv , κe, 0.5), 
where the minimum is taken over all the singular vertices and singular edges, according to the estimates (48) and (75) – 
(79), we obtain

‖∇w‖2
L2(�)

≥ C
∑
T ∈Tn

‖ρ−1 w‖2
L2(T )

≥ C
∑

1≤�≤N

w2
�

({
2−3n for κ ≥ 0.125
κn for 0 < κ < 0.125

)

≥ CwT w
({

2−3n for κ ≥ 0.125
κn for 0 < κ < 0.125

)
.

Therefore, we have proved the desired estimate in (73). In addition, by (47), (49), (56), and (62), we have

‖∇w‖2
L2(�)

≤ C2−n
∑

1≤�≤N

w2
� ≤ C2−nwT w. (80)

Then, the estimate (74) on the condition number is an immediate consequence of (8) – (10), (80), and (73). �
Remark 3.10. It is clear that the estimate on the condition number from the 3D NoMAC mesh (Theorem 3.9) is different than 
the 2D counterpart (Theorem 3.4). In the 3D estimate, the grading parameters to the singular vertex and to the singular edge 
play a similar role in the bounds while only the edge parameter was involved in the 2D case. Note that the dimension of the 
finite element space satisfies N � 8n on the 3D NoMAC mesh Tn . Recall from [12] the following result for a preconditioned 
stiffness matrix As on 3D shape regular meshes,

cond(As) ≤ C N2/3.

Therefore, for mild grading NoMAC meshes in 3D (κ ≥ 0.125), the estimate (74) resembles that for the preconditioned 
stiffness matrix on shape regular meshes. The threshold κ = 0.125 is the by-product of the estimates in (78) and (79), 
where an additional factor 23i or 23(i+k) helps balance the effect from κ until κ < 0.125. The estimates in Theorems 3.4
and 3.9 recover the classical estimates on condition numbers when the usual midpoint decomposition is used in the mesh 
refinement. It can be seen by letting h be the mesh size of Tn after n refinements. Then h � 2−n . For both the 2D and 3D 
cases, since κ = 0.5 for the midpoint decomposition, the estimates in Theorems 3.4 and 3.9 become cond(A) ≤ Ch−2.
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Table 1
Condition numbers on NoMAC meshes: 2D vertex refinements in the L-shaped domain (Fig. 5).

n κv = 0.5 κv = 0.4 κv = 0.3 κv = 0.2 κv = 0.1

cond rn cond rn cond rn cond rn cond rn

3 5.18E1 4.22 4.87E1 4.57 4.73E1 4.73 4.73E1 4.70 8.97E1 5.75
4 2.11E2 4.06 2.06E2 4.22 2.01E2 4.24 2.03E2 4.28 4.01E2 4.47
5 8.47E2 4.02 8.36E2 4.07 8.15E2 4.07 8.29E2 4.09 1.65E3 4.12
6 3.40E3 4.01 3.36E3 4.02 3.28E3 4.02 3.34E3 4.03 6.66E3 4.03

Table 2
Condition numbers on NoMAC meshes: 2D edge refinements in the square domain (Fig. 6).

n κe = 0.5 κe = 0.4 κe = 0.3 κe = 0.2 κe = 0.1

cond rn cond rn cond rn cond rn cond rn

3 5.15E1 4.07 5.49E1 4.51 8.61E1 6.09 2.11E2 9.18 1.30E3 18.3
4 2.07E2 4.02 2.69E2 4.90 5.65E2 6.57 2.08E3 9.84 2.56E4 19.7
5 8.30E2 4.00 1.34E3 4.98 3.77E3 6.67 2.07E4 9.97 5.10E5 19.9
6 3.32E3 4.00 6.69E3 5.00 2.52E4 6.69 2.07E5 9.99 1.02E7 20.0

4. Numerical illustrations

In this section, we report numerical test results to verify the estimates on condition numbers (Theorem 3.4 and Theo-
rem 3.9). In particular, these are the condition numbers of the stiffness matrix (6) from equation (1) on 2D and 3D NoMAC 
meshes. We focus on the growth rate of the condition numbers between consecutive refinements in relation to different 
types of grading parameters. For a given domain �, we use the same notation: denoting by T0 and Tn the initial triangula-
tion and the triangulation after n graded refinements (Algorithm 2.4), respectively. Recall the finite element space Sn in (4)
associated with the mesh Tn and its dimension N = dim(Sn). Note that N � 4n (2D) and N � 8n (3D).

The first set of tests is for meshes on 2D domains: the L-shaped domain and the square domain. On the L-shaped domain 
(Fig. 5), graded meshes are generated toward the re-entrant vertex. These meshes are isotropic and effectively approximating 
the corner singularity in the solution. In Table 1, we list the condition numbers of the stiffness matrices from different values 
of the grading parameter κv . The growth rate rn is the ratio of the condition numbers from two consecutive mesh levels. 
Namely, let An−1 and An (n ≥ 1) be the stiffness matrices on Tn−1 and Tn , respectively. Then,

rn := cond(An)

cond(An−1)
.

Recall that κv = 0.5 corresponds to the midpoint decomposition. It is clear from the table that for different values of κv , 
although the actual condition numbers are different, the growth rate is the same, converging to 4. This is consistent with 
the result in Theorem 3.4 and in [12]. Namely, the condition numbers grow by a factor of 4 on such graded meshes for each 
refinement.

On the square domain (Fig. 6), we test the NoMAC mesh with special refinements toward an edge with the grading 
parameter κe . The test results are listed in Table 2. For κe < 0.5, the triangles close to the edge e can be very thin with the 
maximum angle approaching π as n → ∞. Therefore, the meshes are highly anisotropic and lack of the maximum angle 
condition. According to Theorem 3.4, the condition numbers grow by a factor of 2κ−1

e for each refinement of these meshes. 
We see a strong agreement between the numerical growth rates in Table 2 and this theoretical prediction.

The second set of tests is for meshes on three typical 3D domains: the tetrahedral domain, the prism domain, and the 
Fichera corner domain. The NoMAC mesh has shown its effectiveness in approximating 3D singular solutions [30,32]. We 
here use these domains to test the condition numbers corresponding to different types of refinements.

On the tetrahedral domain (Fig. 7), we implement the graded meshes toward a vertex with the grading parameter κv . 
These meshes are isotropic and become smaller in size near the vertex v to improve the approximation to the possible 
vertex singularity. On the prism domain (Fig. 8), we implement the graded meshes toward the singular edge e with the 
grading parameter κe . These meshes are anisotropic when κe < 0.5 and do not maintain the maximum angle condition. 
Such anisotropic property in the mesh is consistent with the anisotropic behavior of the possible singular solution near the 
edge. Based on Theorem 3.9, in both cases, the condition numbers grow for each refinement by a factor that is determined 
by the estimate (74). Namely, when the grading parameter is greater than or equal to 0.125, the growth rate should be 
4, which is the same rate as for the midpoint refinement. When the grading parameter is less than 0.125, the condition 
numbers are expected to grow by a factor of (2κ)−1, where κ = κv for the tetrahedral domain and κ = κe for the prism 
domain. In Table 3 and Table 4, we list the condition numbers for these two domains. These test results verify our theory: 
for κ ≥ 0.125, the growth rates are 4, while for κ = 0.1, 0.08 and 0.05, the growth rates follow another theoretical estimate 
(2κ)−1.

On the domain with the Fichera corner (Fig. 9), the graded elements are concentrating toward the three singular edges e1, 
e2, and e3, and also toward the singular vertex v . According to Algorithm 2.4, we choose the same grading parameter κ :=
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Table 3
Condition numbers on NoMAC meshes: 3D vertex refinements in the tetrahedral 
domain (Fig. 7).

n κv = 0.5 κv = 0.4 κv = 0.3 κv = 0.2

cond rn cond rn cond rn cond rn

3 5.69E0 5.69 5.27E0 5.27 5.53E0 5.53 6.77E0 6.77
4 2.48E1 4.37 2.41E1 4.57 2.60E1 4.70 3.12E1 4.61
5 1.02E2 4.09 1.05E2 4.37 1.15E2 4.41 1.32E2 4.24
6 4.09E2 4.02 4.32E2 4.11 4.73E2 4.12 5.41E2 4.08
7 1.64E3 4.01 1.74E3 4.03 1.91E3 4.03 2.18E3 4.02

n κv = 0.1 κv = 0.08 κv = 0.05

cond rn cond rn cond rn

3 1.16E1 11.6 1.48E1 14.8 2.66E1 26.6
4 7.79E1 6.73 1.17E2 7.96 3.40E2 12.8
5 4.20E2 5.39 7.90E2 6.72 3.61E3 10.6
6 2.15E3 5.12 5.05E3 6.39 3.68E4 10.2
7 1.08E4 5.03 3.17E4 6.29 3.70E5 10.1

Table 4
Condition numbers on NoMAC meshes: 3D edge refinements in the prism domain 
(Fig. 8).

n κe = 0.5 κe = 0.4 κe = 0.3 κe = 0.2

cond rn cond rn cond rn cond rn

3 2.75E1 4.49 3.28E1 4.82 4.27E1 5.05 6.39E1 5.71
4 1.15E2 4.18 1.44E2 4.37 1.90E2 4.44 2.98E2 4.66
5 4.66E2 4.05 5.95E2 4.15 7.96E2 4.20 1.26E3 4.25
6 1.87E3 4.02 2.41E3 4.06 3.25E3 4.08 5.17E3 4.09
7 7.50E3 4.01 9.69E3 4.02 1.31E4 4.02 2.08E4 4.03

n κe = 0.1 κe = 0.08 κe = 0.05

cond rn cond rn cond rn

3 1.39E2 7.36 1.91E2 8.37 4.38E2 12.3
4 7.30E2 5.28 1.10E3 5.78 4.40E3 10.1
5 3.37E3 4.61 6.75E3 6.11 4.51E4 10.3
6 1.46E4 4.33 4.25E4 6.30 4.57E5 10.1
7 6.90E4 4.73 2.66E5 6.27 4.58E6 10.0

Table 5
Condition numbers on NoMAC meshes: 3D vertex and edge refinements (κ = κv = κei , 1 ≤ i ≤ 3) in the domain 
with the Fichera corner (Fig. 9).

n κ = 0.5 κ = 0.4 κ = 0.3 κ = 0.2 κ = 0.1

cond rn cond rn cond rn cond rn cond rn

3 6.20E1 4.38 8.75E1 4.73 1.45E2 5.42 2.85E2 6.55 1.58E3 11.4
4 2.57E2 4.14 3.83E2 4.38 6.76E2 4.67 1.73E3 6.05 1.49E4 9.43
5 1.04E3 4.05 1.60E3 4.18 2.88E3 4.26 8.61E3 4.99 9.68E4 6.51
6 4.18E3 4.02 6.50E3 4.07 1.17E4 4.07 3.79E4 4.41 5.29E5 5.46
7 1.67E4 4.00 2.62E4 4.02 4.73E4 4.02 1.57E5 4.13 2.72E6 5.14

κv = κei (1 ≤ i ≤ 3) for the singular vertex and edges to simplify the implementation. Note that we need many tetrahedra 
in the initial mesh due to the complex geometry of the domain. Therefore, with the same number of refinements, the size 
of the stiffness matrix in this test is much larger than those in the other two tests on 3D domains. The test results are 
displayed in Table 5, which also validate the estimate in Theorem 3.9: for κ ≥ 0.125, the growth rate is 4 and for κ < 0.125, 
the growth rate is bounded by (2κ)−1.

In the tests above, the stiffness matrices are defined as in (6) on NoMAC meshes. According to Algorithm 2.4, if the 
grading refinement is only for the vertex of the domain (see Fig. 7 for a 3D example), the resulting meshes are isotropic 
and shape regular [30]. In this case, a simple diagonal preconditioner [12] will result in a scaled stiffness matrix whose 
condition number is bounded by the estimate in (2). In 3D, this means the condition numbers of the scaled stiffness matrix 
grow by a factor of 4 for consecutive graded refinements regardless of the grading parameter. We display the condition 
numbers in this case in Table 6 for the readers’ reference. Comparing the results in Table 6 and in Table 3, it is clear that 
the diagonal preconditioner can improve the conditioning of the FEMs. We point out, however, that this preconditioning 
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Table 6
Condition numbers of the scaled stiffness matrix on NoMAC meshes: 3D vertex 
refinements in the tetrahedral domain (Fig. 7).

n κv = 0.5 κv = 0.4 κv = 0.3 κv = 0.2

cond rn cond rn cond rn cond rn

3 5.19E0 5.19 5.07E0 5.07 5.54E0 5.54 7.30E0 7.30
4 2.26E1 4.36 2.21E1 4.38 2.47E1 4.46 3.45E1 4.72
5 9.26E1 4.09 9.14E1 4.12 1.03E2 4.15 1.46E2 4.24
6 3.72E2 4.02 3.69E2 4.04 4.15E2 4.05 5.97E2 4.07
7 1.49E3 4.00 1.48E3 4.02 1.67E3 4.01 2.40E3 4.02

n κv = 0.1 κv = 0.08 κv = 0.05

cond rn cond rn cond rn

3 1.54E1 15.4 2.02E1 20.2 3.61E1 36.1
4 7.98E1 5.20 1.06E2 5.25 1.94E2 5.37
5 3.43E2 4.30 4.55E2 4.29 8.24E2 4.26
6 1.40E3 4.09 1.86E3 4.09 3.36E3 4.08
7 5.65E3 4.02 7.47E3 4.02 1.35E4 4.02

technique is not well defined for anisotropic meshes toward singular edges. Further investigation is needed to develop good 
preconditioners for the finite element equations on anisotropic NoMAC meshes.
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