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ANALYSIS OF THE FINITE ELEMENT METHOD FOR TRANSMISSION/MIXED
BOUNDARY VALUE PROBLEMS ON GENERAL POLYGONAL DOMAINS ∗

HENGGUANG LI†, ANNA MAZZUCATO ‡, AND VICTOR NISTOR‡

Abstract. We study theoretical and practical issues arising in the implementation of the Finite Element Method
for a strongly elliptic second order equation with jump discontinuities in its coefficients on a polygonal domainΩ that
may have cracks or vertices that touch the boundary. We consider in particular the equation− div(A∇u) = f ∈

Hm−1(Ω) with mixed boundary conditions, where the matrixA has variable, piecewise smooth coefficients. We
establish regularity and Fredholm results and, under some additional conditions, we also establish well-posedness
in weighted Sobolev spaces. When Neumann boundary conditionsare imposed on adjacent sides of the polygonal
domain, we obtain the decompositionu = ureg + σ, into a functionureg with better decay at the vertices and
a functionσ that is locally constant near the vertices, thus proving well-posedness in an augmented space. The
theoretical analysis yields interpolation estimates that are then used to construct improved graded meshes recovering
the (quasi-)optimal rate of convergence for piecewise polynomials of degreem ≥ 1. Several numerical tests are
included.

Key words. Neumann-Neumann vertex, transmission problem, augmented weighted Sobolev space, finite ele-
ment method, graded mesh, optimal rate of convergence
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1. Introduction. In this paper we study second-order, strongly elliptic operators in di-
vergence formP = −div A∇ on generalized polygonal domains in the plane, where the
coefficients are piecewise smooth with possibly jump discontinuities across a finite number
of curves, collectively called theinterface.

Let Ω be a bounded polygonal domain that may have curved boundaries, cracks, or ver-
tices touching the boundary. We refer to such domains asdomains with polygonal structure
(see Figure2.1 for a typical example). We assume thatΩ̄ = ∪Ω̄j , whereΩj are disjoint
domains with a polygonal structure such that the interfaceΓ := ∪∂Ωj r ∂Ω is a union of
disjoint, piecewise smooth curvesΓk. The curvesΓk are allowed to intersect transversely.
We are interested in thenon-homogeneous transmission/mixed boundary value problem

(1.1)
Pu = f in Ω, DP

ν u = gN on∂NΩ, u = gD on∂DΩ,

u+ = u− and DP+
ν u = DP−

ν u onΓ,

and the convergence properties of its Finite Element discretizations. Here,A = (Aij) is
the symmetric matrix of coefficients ofP , DP

ν :=
∑

ij νiAij∂j is the conormal derivative
associated toP , and the boundary∂Ω is partitioned into two disjoints sets∂DΩ, ∂NΩ with
∂DΩ a union of closed sides of∂Ω.

Transmission problems of the form in Equation (1.1) (also called “interface problems” or
”inclusion problems” in the engineering literature) appear in many practical applications, in
particular they are likely to appear any time that more than one type of material (or medium)
is used. Therefore, they have been studied in a very large number of papers devoted to
applications. Among those, let us mention the paper by Peskin [68], LeVeque and Li [51],
Li and Lubkin [55], Yu, Zhou, and Wei [80]. See also the references therein. By contrast,
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relatively fewer papers were devoted to these problems fromthe point of view of qualitative
properties of Partial Differential Equations. Let us nevertheless mention here the papers of
Kellogg [44], Kellogg and Aziz [6], Mitrea, Mitrea, and Shi [61], Li and Nirenberg [53],
Li and Vogelius [54], Roitberg and Sheftel [71, 72], and Schechter [75]. Our paper starts
with some theoretical results for transmission problems and then provides applications to
numerical methods. See also the papers of Kellogg [43] and Nicaise and S̈andig [67], and the
books of Nicaise [66] and Harutyunyan and Schulze [40].

The equationPu = f in Ω has to be interpreted in a weak sense and then the disconti-
nuity of the coefficientsAij leads to “transmission conditions” at the interfaceΓ. SinceΓ is
a union of piecewise smooth curves, we can locally choose a labeling of the non-tangential
limits u+ andu− of u at the smooth points of the interfaceΓ. We can label similarlyDP+

ν

andDP−
ν the two conormal derivatives associated toP at the two sides of the interface. Then

the usual transmission conditionsu+ = u− andDP+
ν u = DP−

ν u at the two sides of the
smooth points of the interface are a consequence of the weak formulation, and will always be
considered as part of Equation (1.1). This equation does not change if we switch “+” to “−,”
so our choice of labeling is not essential. At thenon-smoothpoints ofΓ, we assign no mean-
ing to the interface conditionDP+

ν u = DP−
ν u. The more general conditionsu+ − u− = h0

andDP+
ν u − DP−

ν u = h1 can be treated with only minor modifications. We also allow the
cracks to ramify as part of∂Ω.

It is well-known that when∂Ω is not smooth there is a loss of regularity in elliptic
boundary-value problems. Because of this loss of regularity, a quasi-uniform sequence of
triangulations onΩ doesnot give optimal rates of convergence for the Galerkin approxima-
tionsuh of the solution of (1.1) [78]. One needs to considergradedmeshes instead (see for
example [7, 12, 70]). We approach the problem (1.1) using higher regularity in weighted
Sobolev spaces. For transmission problems, these results are new (see Theorems3.1–3.3).

We therefore begin by establishing regularity results for (1.1) in the weighted Sobolev
spacesKm

→
a
(Ω), where the weight may depend on each vertex ofΩ (see Definition (2.7)).

We identify the weights that makeP Fredholm following the results of Kondratiev [46] and
Nicaise [66]. If no two adjacent sides are assigned Neumann boundary conditions (i. e., when
there are no Neumann–Neumann vertices), we also obtain a well-posedness result for the
weight parameter

→
a close to 1. In the general case, we first compute the Fredholm index of

P , and then we use this computation to obtain a decompositionu = ureg + σ of the solution
of u of (1.1) into a function with good decay at the vertices and a function that is locally
constant near the vertices. This decomposition leads to a new well-posedness result if there
are Neumann–Neumann vertices.

Our main focus is the analysis of the Finite Element Method for Equation (1.1). We are
especially interested in obtaining a sequence of meshes that provides quasi-optimal rates of
convergence. For this reason, in this paper we restrict to domains in the plane. However,
Theorems3.1, 3.2, and3.3extend to 3D (see [58] for proofs in the absence of interfaces and
[16] for a proof of the regularity in the presence of interfaces in n-dimensions). We assume
thatΩ has straight faces and consider a sequenceTn of triangulations ofΩ. We let

Sn ⊂ H1
D(Ω) := H1(Ω) ∩ {u = 0 on∂DΩ}

be the finite element space of continuous functions onΩ that restrict to a polynomial of degree
m ≥ 1 on each triangle ofTn, and letun ∈ Sn be the Finite Element approximation ofu,
defined by equation (5.1). We then say thatSn providesquasi-optimal rates of convergence
for f ∈ Hm−1(Ω) if there existsC > 0 such that

(1.2) ‖u − un‖H1 ≤ C dim(Sn)−m/2‖f‖Hm−1 ,
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for all f ∈ Hm−1(Ω). We do not assumeu ∈ Hm+1(Ω). (In three dimensions, the
powerm/2 has to be replaced withm/3.) Hence the sequenceSn provides a quasi-optimal
rate of convergence if it recovers the asymptotic order of convergence that is expected if
u ∈ Hm+1(Ω) and if quasi-uniform meshes are used. See the papers of Brenner, Cui, and
Sung [26], Brannick, Li, and Zikatanov [24], and Guzḿan [38] for other applications of
graded meshes. Corner singularities and discontinuous coefficients have been studied also
using “least squares methods” [21, 22, 29, 50, 49]. Here we concentrate on improving the
convergence rate of the usual Galerkin Finite Element Method, to approximate singular so-
lutions in the transmission problem (1.1). Thenewa priori estimates in augmented weighted
Sobolev spaces developed in Section4 play a crucial role in our analysis of the numerical
method.

The problem of constructing sequences of meshes that provide quasi-optimal rates of
convergence has received much attention in the literature –we mention in particular the work
of Apel [2], Babǔska and collaborators [7, 11, 12, 13, 37], Bacuta, Nistor, and Zikatanov [17],
Bacuta, Bramble, and Xu [14], Costabel and Dauge [33], Dauge [34], Grisvard [36], Lubuma
and Nicaise [56], Schatz, Sloan, and Wahlbin [74]. Let us mention the related approach
of adaptive mesh refinements, which also leads to quasi-optimal rates of convergence in two
dimensions [23, 59, 63]. Similar results are needed for the study of stress-intensity factors [25,
28]. However, the case of hyperbolic equations is more difficult [60]. Cracks are important
in Engineering applications, see [35] and the references therein. Transmission problems are
important in optics and acoustics [30]

We exploit the theoretical analysis of the operatorP to obtain ana priori bound and
interpolation inequalities. These in turn allow us to verify that the sequence of graded meshes
we explicitly construct yields quasi-optimal rates of convergence. For transmission problems,
we recover quasi-optimal rates of convergence if the data isin Hm−1(Ωj) for eachj. To
account for the pathologies inΩ, we work in weighted Sobolev spaces with weights that
depend on a particular vertex a more general setting than theone considered in [18]. The
use of inhomogeneous norms allows us to theoretically justify the use of different grading
parameters at different vertices when constructing gradedmeshes. A priori estimates are a
well-established tool in Numerical Analysis; see e.g., [4, 5, 8, 10, 20, 27, 31, 39, 45, 62, 77].

At the same time, we address several issues that are of interest in concrete applications,
but have received little attention. For instance, we consider cracks and higher regularity for
transmission problems. Regularity and numerical issues for transmission problems were stud-
ied before by several authors; see for example Nicaise [66] and Nicaise and S̈andig [67] and
references therein. As in these papers, we use weighted Sobolev spaces, but our emphasis is
not on singular functions, but rather on well-posedness results. This approach leads to a uni-
fied way to treat mixed boundary conditions and interface transmission conditions. In particu-
lar, there is no additional computational complexity in treating Neumann–Neumann vertices.
Thus, although the theoretical results we establish are different in the case of Neumann–
Neumann corners than in the case of Dirichlet–Neumann or simply Dirichlet boundary con-
ditions, the numerical method that results isthe samein all these cases, which should be an
advantage in implementation.

The paper is organized as follows. In Section2, we introduce the notion of domain with
polygonal structure and discuss the precise formulation ofthe transmission/boundary value
problem (1.1) in the weighted Sobolev spaceKm

→
a
(Ω). In Section3, we state and prove pre-

liminary results concerning regularity and solvability ofthe problem (1.1) when the interface
is smooth and no two adjacent sides ofΩ are given Neumann boundary conditions (Theo-
rems3.1, 3.2, 3.3). In Section4, we consider the more difficult case of Neumann-Neumann
vertices and non-smooth interfaces. We exploit these results and spectral analysis to obtain
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FIG. 2.1.A domain with a polygonal structure.

a new well-posedness result in a properly augmented spaceK1
→
a+1

(Ω) + Ws, andarbitrarily

high regularity of the weak solutionu in each subdomainΩj (Theorems4.5 and4.7). For
simplicity, we state and prove these results for the model example ofP = div(A∇u), A a
piecewise constant function, which will be used for numerical tests. By contrast, when in-
terfaces cross, compatibility conditions on the coefficients need be imposed to obtain higher
regularity inHs(Ω), 1 < s < 3/2 [69]. In Section5, we tackle the explicit construction of
graded meshes giving quasi-optimal rates of convergence for the FEM solution of the mixed
boundary/transmission problem (1.1) in the case of a piecewise linear domain, and derive
the necessary interpolation estimates (Theorems5.11 and5.12). In Section6, we test our
methods and results on several examples and verify the optimal rate of convergence.

We hope to extend our results to three dimensional polyhedral domains. The regularity
results are known to extend to that case [16]. The problem is that the space of singular
functions is infinite dimensional in the three dimensional case. Further ideas will therefore
be needed to handle the case of three dimensions.

2. Formulation of the problem . We start by describing informally the class of “do-
mains with a polygonal structure”Ω, a class of domains introduced (with different names and
slightly different definitions) by many authors. Here we follow most closely [34]. Next we
describe in more detail the formulation of the transmission/mixed boundary value problem
(1.1) associated toP and interfaceΓ. The coefficients ofP may have jumps atΓ.

2.1. The domain. The purpose of this section is to provide an informal description
of the domains under consideration, emphasizing their richstructure and their suitability
for transmission/mixed boundary value problems. In Figure2.1, we exemplify the various
types of singularities, some of geometric nature, others stemming from solving the transmis-
sion/mixed boundary value problem (1.1). These singularities are discussed in more detail
below.

We consider bounded polygonal-like domainsΩ that may have cracks or vertices that
touch a smooth part of the boundary. Recall that polygonal domains are not always Lipschitz
domains, however, the outer normal to the boundary is well-defined except at the vertices. If
cracks are present, then the outer normal is not well-definedsince∂Ω̄ 6= ∂Ω. In order to study
cracks, we model each smooth part of a crack as a double covering of a smooth curve. We then
distinguish the two normal directions in which we approach the boundary. This distinction
is also needed when we study vertices that touch the boundary. When cracks ramify, we
need further to differentiate from which direction we approach the point of ramification. This
distinction will be achieved by considering the connected neighborhoods ofB(x, r)∩Ω, when
x is on the boundary, as in Dauge [34]. More precisely, we will distinguish for each point
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of the boundary the side from which we approach it. This defines, informally, the “unfolded
boundary”∂uΩ of Ω. What is most important for us in this concept, is that each smooth
crack pointp of Ω will be replaced in∂uΩ by two points, corresponding to the two sides of
the crack and the two possible non-tangential limits atp of functions defined onΩ.

We really need the distinction between the usual boundary∂Ω and the unfolded boundary
∂uΩ, since it plays a role in the implementations. Moreover, we can define the “inner-pointing
normal” vector consistentlỹν at every smooth point of∂uΩ, even at crack points (but not
at vertices). Theouter normalto ∂uΩ is defined byν = −ν̃. Similarly, we defined the
“unfolded closure”uΩ := Ω ∪ ∂uΩ. The test functions used in our implementation will be
defined onuΩ andnot on Ω (this point is especially relevant for the difficult and important
case of cracks that are assigned Neumann boundary conditions on each side). More details
will be included in a forthcoming paper [52].

When considering mixed boundary conditions, it is well knownthat singularities appear
at the points where the boundary conditions change (from Dirichlet to Neumann). These
singularities are very similar in structure to the singularities that appear at geometric vertices.
We therefore view “vertices” simply as points on the boundary with special properties, the
geometric vertices being “true vertices” and all others being “artificial vertices.” The set of
artificial vertices includes, in particular, all points where the type of boundary conditions
change, but may include other points as well (coming from theinterface for example). This
choice allows for a greater generality, which is convenientin studying operators with singular
coefficients.

We therefore fix a finite setV ⊂ ∂uΩ, which will serve as the set where we allow
singularities in the solution of our equation. We shall callthe setV the set of verticesof Ω.
The set of verticesV will contain at a minimum all non-smooth points of the boundary or
of the interface, all points where the boundary conditions change, and all points where the
boundary intersects the interface, but there could be otherpoints inV as well. In particular,V
is such that all connected components of∂uΩrV consist of smooth curves on which a unique
type of boundary condition (Dirichlet or Neumann) is given.In particular, the structure onΩ
determined byV is not entirely given by the geometry and depends also on the specifics of
the transmission/boundary value problem. This structure,in turns, when combined with the
introduction of the unfolded boundary, gives rise to the concept of adomain with a polygonal
structure, introduced in [34] and discussed at length in [58] (except the case of a vertex
touching a smooth side).

2.2. The equation. We consider a second orderscalar differential operator with real
coefficientsP : C∞

c (Ω) → C∞
c (Ω)

(2.1) Pu := −div
(

A∇u
)

= −
2

∑

i,j=1

∂jA
ij∂iu.

We assume, for simplicity, thatAij = Aji. The model example, especially for the numerical
implementation, is the operatorP = div A∇, whereA is a piece-wise constant function.
Under some mild assumptions on the lower-order coefficients, the results in the paper extend
also to operators of the formP = −∑2

i,j=1 ∂jA
ij∂i +

∑2
i=1 bi∂i + c. Our methods apply

as well to systems and complex-valued operators, but we restrict to the scalar case for the
sake of clarity of presentation. In [58], we studied the system of anisotropic elasticityP =
−div ◦C ◦ ∇ in 3 dimensions (in the notation above (2.1), Aij = [Cpq]

ij).
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We assume throughout the paper thatP is uniformly strongly elliptic, i.e.,

(2.2)
2

∑

i,j=1

Aij(x)ξiξj ≥ C‖ξ‖2,

for some constantC > 0 independent ofx ∈ Ω̄ andξ ∈ R
2.

We also assume that we are given a decomposition

(2.3) Ω = ∪N
j=1Ωj ,

whereΩj are disjoint domains with a polygonal structure, and define the interface

(2.4) Γ :=
(

∪N
j=1 ∂Ωj

)

r ∂Ω,

which we assume to be the union of finitely many piecewise smooth curvesΓk. We allow the
curvesΓk to intersect, but we require these intersections to be transverse, i. e., not tangent. We
take the coefficients of the differential operatorP to bepiecewise smoothin Ω with possible
jumps only alongΓ, that is, the coefficients ofP on Ωj extend to smooth functions onΩj .
Also, we assume that all the vertices of the domains with a polygonal structureΩj that are
on the boundary ofΩ are already included in the setV of vertices ofΩ.

To formulate our problem, we introduceinhomogeneousweighted Sobolev spaces, where
the weight depends on the vertex, considered before in [57]. Let d(x,Q) be the distance from
x to Q ∈ V, computed using paths inuΩ and let

(2.5) ϑ(x) =
∏

Q∈V

d(x,Q).

Let
→
a = (aQ) be a vector with real components indexed byQ ∈ V. We denotet +

→
a =

(t + aQ), but writet instead of
→
a if all the components of

→
a are equal tot. We then set

(2.6) ϑt+
→
a (x) :=

∏

Q∈V

d(x,Q)t+aQ = ϑt(x)ϑ
→
a (x),

and define themth weighted Sobolev space with weight
→
a by

(2.7) Km
→
a
(Ω) := {f : Ω → C, ϑ|α|−

→
a ∂αf ∈ L2(Ω), for all |α| ≤ m}.

The distance functionϑ is continuous onuΩ but it is not smooth at the vertices. Whenever
derivatives ofϑ are involved,we implicitly assume thatϑ has been replaced by a more regular
weight functionrΩ. This weight function is comparable toϑ and induces an equivalent norm
on Km

→
a

. One can describe the spacesKm
→
a
(Ω) also using certain dyadic partitions of unity.

See [1, 33, 47, 58] for example. Such partitions of unity allow also to define spaces on the
(unfolded) boundary ofΩ, Ks

→
a
(∂uΩ), s ∈ R, for which the usual interpolation, duality, and

trace properties still apply.
Our first goal is to study solvability of the problem (1.1) in Km+1

→
a

(Ω), m ≥ 0. The
boundary conditions are given oneach sidein the unfolded boundary∂uΩ, where we assume
that

∂uΩ = ∂NΩ ∪ ∂DΩ, ∂DΩ ∩ ∂NΩ = ∅,
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such that∂DΩ a union of closed sides ofΩ. We impose Neumann datagN ∈ Km−1/2
→
a−1/2

(∂NΩ)

and Dirichlet datagD ∈ Km+1/2
→
a+1/2

(∂DΩ), m ≥ 0. By the surjectivity of the trace map, we can

reduce to the casegD = 0 (in trace sense).
Form = 0, the problem (1.1) must be interpreted in an appropriate weak (or variational)

sense, which we now discuss. For eachu, v ∈ H1(Ω), we define the bilinear formBP (u, v)

(2.8) BP (u, v) :=
∑

ij

∫

Ω

Aij∂iu ∂jv dx, 1 ≤ i, j ≤ 2,

and denote byDP
ν theconormal derivativeoperator associated toP , given by

(2.9) (DP
ν u) :=

∑

ij

νiA
ij∂j .

The definition ofDP
ν u is understood in the sense of the trace at the boundary. In particular,

whenu is regular enoughDP
ν u is defined almost everywhere as a non-tangential limit, con-

sistently withν being defined only almost everywhere on∂uΩ. We recall thatν is defined on
∂uΩ except at the vertices because the smooth crack points of∂Ω are doubled in∂uΩ.

SinceΩ is a finite union of Lipschitz domains, Green’s Lemma holds for functions in
H2(Ω) [36], that is,

(2.10) (Pu, v)L2(Ω) = BP (u, v) − (DP
ν u, v)L2(∂uΩ), u, v ∈ H2(Ω).

Hence, we let

(2.11) H→
a

:= {u ∈ K1

1+
→
a
(Ω), u = 0 on∂DΩ},

and we define the weak solutionu of equation (1.1) with gD = 0 as the uniqueu ∈ H→
a

satisfying

(2.12) BP (u, v) = Φ(v) for all v ∈ H
−

→
a
.

whereΦ ∈ (H
−

→
a
)∗ is defined byΦ(u) =

∫

Ω
fu dx +

∫

∂NΩ
gNu dS(x), the integrals being

duality pairings between distributions and (suitable) functions.
Whenu is regular enough, problem (1.1) is equivalent to the following mixed boundary

value/interface problem

(2.13)



















Pu = f in Ω,

u = gD = 0 on∂DΩ ⊂ ∂uΩ,

DP
ν u = gN on∂NΩ ⊂ ∂uΩ,

u+ = u− andDP+
ν u = DP−

ν u onΓ,

where it is crucial that∂NΩ and∂DΩ are subsets of theunfolded boundary. (Recall that
the unfolded boundary is defined by doubling the smooth points of the crack. In particular,
one can have Dirichlet boundary conditions on one side of thecrack and Neumann boundary
conditions on the other side of the crack.) In (2.13), u+ andu− denote the two non-tangential
limits of u at the two sides of the interfaceΓ. This choice can be done consistently at each
smooth point ofΓ. Similarly,DP+

ν andDP−
ν denote the two conormal derivatives associated

to P and the two sides ofΓ. Note that the singularities in the coefficients ofA are taken into
account in the definitions ofDP+

ν andDP−
ν . If u is only inK1

→
a+1

(Ω) and satisfy (2.12), then
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the differenceDP+
ν u − DP−

ν u may be non-zero (so (2.13) is not strictly satisfied), but may
be included as a distributional term inf .

Thus the usual transmission conditionsu+ = u− andDP+
ν u = DP−

ν u at the two sides of
the interface are a consequence of the weak formulation, andwill always be considered as part
of equation (1.1). The slightly more general conditionsu+−u− = h0 andDP+

ν u−DP−
ν u =

h1 can be treated with only minor modifications, as explained in[67]. More precisely, the
termh0 can be treated using extensions similarly to the termgD. The termh1 can be treated
by introducing in the the weak formulation the term

∫

Γ
h1uds, whereds is arc length onΓ.

In order to establish regularity and solvability of (2.13), under the hypothesis thatP is
uniformly strongly elliptic, we shall use coercive estimates. We say thatP is coercive on
H0 := H→

a=0
if there existsθ > 0 andγ ∈ R such that

(2.14) BP (u, u) ≥ θ(∇u,∇v)L2(Ω) − γ(ϑ−2u, v)L2(Ω), for all u, v ∈ H0.

If this inequality holds for someγ < 0, we say thatP is strictly coercive onH0 (or strictly
positive) and writeP > 0. The operatorP in (2.1) is always coercive onH0. If there are no
Neumann–Neumann vertices and the interfaceΓ is smooth, thenP is strictly coercive onH0,
as it will be discussed in the next section.

3. Preliminary results. Our approach in studying singularities for problem (2.13) is
based on solvability in weighted spaces rather than on singular functions expansions. We
begin with three results on regularity and well-posedness for the boundary-value problem
(2.13), which we first state and then prove. See [17, 18, 42, 43, 44, 6, 46, 47, 65, 66, 67]
for related results. In particular our result should be compared with [66], especially Theorem
3.12. By “well-posedness” we mean “existence and uniqueness of solutions and continuous
dependence on the data.” Recall that for transmission problems we assume that all the vertices
of the domains with a polygonal structureΩj that are on the boundary ofΩ are included in
the set of vertices ofΩ. Below, if no interface is given, we takeΩ = Ω1. WhenΩ 6= Ω1 6= ∅,
we have aproper transmission problem.

We first deal with the general case of an interface that is the union of finitely manypiece-
wise smooth curves with transverse intersections, and establish that the transmission/mixed
boundary problem (1.1) satisfies a regularity property. We assume that the non-smooth points
of the interfaceΓ are included in the vertices of the adjacent domainsΩj (the self-intersection
points, which are assumed to be transverse, are also included in the set of vertices). This reg-
ularity result is crucial in obtaining the necessarya priori estimates for quasi-optimal rates of
convergence in Section5 for transmission problems.

We first state our main results on regularity and well-posedness and then we prove them.
THEOREM 3.1. Assume thatP = −div A∇ is a uniformly strongly elliptic, scalar

operator in divergence form onΩ with piecewise smooth coefficients. Also, assume that
u : Ω → R with u ∈ K1

→
a+1

(Ω) is a solution of the transmission/mixed boundary problem

(1.1). Let m ≥ 0, and suppose thatgN ∈ Km−1/2
→
a−1/2

(∂NΩ), gD ∈ Km+1/2
→
a+1/2

(∂DΩ), and

f : Ω → R is such thatf |Ωj
∈ Km−1

→
a−1

(Ωj). Thenu|Ωj
∈ Km+1

→
a+1

(Ωj), for eachj, and we

have the estimate

‖u‖K1
→
a +1

(Ω)+‖u‖Km+1
→
a +1

(Ωj)
≤ C

(

N
∑

k=1

‖f‖Km−1
→
a −1

(Ωk) + ‖gN‖
K

m−1/2

→
a −1/2

(∂NΩ)
+

‖gD‖
K

m+1/2

→
a +1/2

(∂DΩ)
+ ‖u‖K0

→
a +1

(Ω)

)
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for a constantC that is independent ofu and the dataf , gN , andgD.
Note that, in the above result, the spacesKm−1

→
a−1

(Ωk) are defined intrinsically, i. e., with-

out reference toKm−1
→
a−1

(Ω), using as weight the distance to the set of vertices ofΩk, which

includes also the points ofΩj whereΓ is not smooth or where it ramifies.
The next two results deal with solvability of the problem (1.1), in the case of a smooth

interface and when∂uΩ contains no adjacent sides with Neumann boundary conditions. (The
condition thatΓ is smooth in particular implies thatΓ is a disjoint union of smooth curves.)
These results are also the basis for the analysis in Section4 in the presence of Neumann-
Neumann vertices and general interfaces (Theorems4.5and4.7, where an augmented domain
for the operator is required). Recall that the weak solutionu is given in equation (2.12) with
Φ = (f, gN ) ∈ H∗

−
→
a

(because we takegD = 0).

THEOREM 3.2. Assume thatP is a uniformly strongly elliptic, scalar operator on̄Ω.
Assume also that no two adjacent sides ofΩ are given Neumann boundary conditions and
that the interfaceΓ is smooth. ThenP is strongly coercive onH0 and for each vertexQ of
Ω there exists a positive constantηQ with the following property: for anyΦ ∈ H∗

−
→
a

with

|aQ| < ηQ, there exists a unique weak solutionu ∈ K1
→
a+1

(Ω), u = 0 on ∂DΩ of equation

(2.13), and we have the estimate

‖u‖K1
→
a +1

(Ω) ≤ C‖Φ‖

for a constantC = C(
→
a ) that is independent ofΦ.

When the data is more regular, we can combine the above two theorems into a well-
posedness result for the transmission/mixed boundary problem. We note that continuous
dependence of the solution on the data immediately follows from the estimate below since
the boundary-value problem is linear.

THEOREM 3.3. Let m ≥ 1. In addition to the assumptions of Theorem3.2, assume
that gN ∈ Km−1/2

→
a−1/2

(∂NΩ), gD ∈ Km+1/2
→
a+1/2

(∂DΩ), and thatf : Ω → R is such thatf |Ωj
∈

Km−1
→
a−1

(Ωj). Then the solutionu ∈ K1
→
a+1

(Ω) of equation(2.13) satisfiesu|Ωj
∈ Km+1

→
a+1

(Ωj),

for all j, and we have the estimate

‖u‖Km+1
→
a +1

(Ωj)
≤ C

(

∑

k

‖f‖Km−1
→
a −1

(Ωk) + ‖gN‖
K

m−1/2

→
a −1/2

(∂NΩ)
+ ‖gD‖

K
m+1/2

→
a +1/2

(∂DΩ)

)

.

If P = −∑2
i,j=1 ∂jA

ij∂i+
∑2

i=1 bi∂i+c, that is, if lower order coefficients are included,

our results extend to the case when2c−∇·
→

b ≥ 0 in Ω andν ·
→

b ≥ 0 on∂NΩ, where
→

b = (bi).
Let us denote bỹPv = (⊕P |Ωj

,DP
ν )v := (Pv|Ω1

, . . . , Pv|ΩN
,DP

ν v), decorated with
various indices. As a corollary to the theorem, we establishthe following isomorphism.

COROLLARY 3.4. We proceed as in [58]. Let m ≥ 1. Under the assumptions of
Theorem3.3, the map

P̃
m,

→
a

:= (⊕P |Ωj
,DP

ν ) : {u ∈ K1
→
a+1

(Ω), u|Ωj
∈ Km+1

→
a+1

(Ωj), u = 0 on∂DΩ,

u+ = u− andDP+
ν u = DP−

ν u onΓ} → ⊕jKm−1
→
a−1

(Ωj) ⊕Km−1/2
→
a−1/2

(∂NΩ)

is an isomorphism for|aQ| < ηQ. See [58] for more details of this method.
We next turn to the proofs of Theorems3.1, 3.2, and3.3. We will only sketch proofs and

concentrate on the new issues raised by the presence of interfaces, referring for more details
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to [1, 17, 58], where similar results were established for mixed boundary value problems in
homogeneousKm

a spaces.
Proof of Theorem3.1. Using a partition of unity, it is enough to prove the result on

the model problem (2.13) with Ω = R
n andΓ = {xn = 0}, that is, no boundary and one

interface. We can assume without loss of generality thatu has compact support on a fixed ball
B centered at the origin. Then by known regularity results [71] (see also [66] and references
therein), ifu ∈ H1

0 (B) andPu|R±
∈ Hm−1(Rn

±), u|R±
∈ Hm+1(Rn

±).
We next turn to the proof of well-posedness for the transmission/mixed boundary prob-

lem (2.13), namely, to the proofs of Theorems3.2 and3.3. As before, we denoteH→
a

:=

{u ∈ K1

1+
→
a
(Ω), u = 0 on∂DΩ}, where∂DΩ is assumed non empty, and we setH0 = H→

0
.

Strict coercivity ofP on H0 then ensues in the standard fashion from a weighted form of
Poincaŕe inequality, which we now recall.

LEMMA 3.5. Let Ω ⊂ R
2 be a domain with a polygonal structure. Letϑ(z) be the

canonical weight function onΩ and let∂DΩ be a non-empty closed subset of the unfolded
boundary∂uΩ such that∂NΩ = ∂uΩ \ ∂DΩ is a union of oriented open sides ofΩ, no two
of which are adjacent. Then there exists a constantCΩ > 0 such that

‖u‖2
K0

1
(Ω) :=

∫

Ω

|u(z)|2
ϑ(z)2

dz ≤ CΩ

∫

Ω

|∇u(z)|2dz

for anyu ∈ H1(Ω) satisfyingu = 0 on∂DΩ.
In particular, anyu ∈ H1(Ω) satisfying the assumptions of the above theorem will be

automatically inK0
1(Ω). This estimate is a consequence of the corresponding estimate on a

sector, which can be proved in the usual way, given that are only finitely many vertices and
that near each vertexQ, uΩ is diffeomorphic to a sector of angle0 < α ≤ 2π [17, 65] (the
angle is2π at crack tips).

Proof of Theorems3.2and3.3. We first observe that

BP (u, u) =

∫

Ω

∑

ij

Aij(x)∂iu(x) ∂ju(x) dx ≥ CP

∫

Ω

|∇u(x)|2 dx, u ∈ H0,

using the strong ellipticity condition, equation (2.2). By Lemma3.5, −∆ is strictly coercive
onH0, given the hypotheses on∂uΩ. Therefore, ifu ∈ H0

BP (u, u) =

∫

Ω

∑

ij

Aij(x)∂iu(x) ∂ju(x) dx ≥ CP

∫

Ω

|∇u(x)|2 dx ≥ CP,Ω ‖u‖2
K0

1
(Ω).

The first part of Theorem3.2 is proved.
Next, we employ the maps

P̃
m,

→
a

:= (⊕P |Ωj
,DP

ν ) : {u ∈ K1
→
a+1

(Ω), u|Ωj
∈ Km+1

→
a+1

(Ωj), u = 0 on∂DΩ,

u+ = u− andDP+
ν u = DP−

ν u onΓ} → ⊕jKm−1
→
a−1

(Ωj) ⊕Km−1/2
→
a−1/2

(∂NΩ)

of Corollary3.4. To prove the rest of the Theorems3.2 and3.3, we will show thatP̃
m,

→
a

is
an isomorphism form ≥ 0 and|aQ| < ηQ. SinceBP is strictly coercive onH0, it satisfies
the assumptions of the Lax-Milgram lemma, and henceB∗

P : H0 → H∗
0 is an isomorphism,

whereB∗
P (u)(v) = BP (u, v). That is,P̃0,0 is an isomorphism. Hence, Theorems3.2and3.3

are established form = 0 and
→
a = 0.
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To extend the results to the case
→
a 6= 0 with |aQ| < ηQ, we exploit continuity. LetrΩ be

a smoothing ofϑ outside the vertices. As in [1, 58], the family of operatorsr−
→
a

Ω P
m,

→
a
r
→
a

Ω act

on the same space and depend continuously on
→
a . SinceP0,0 is an isomorphism, we obtain

thatP
0,

→
a

is an isomorphism for
→
a close to0. In particular, there existsηQ > 0 such that for

|aQ| < ηQ, P
0,

→
a

is an isomorphism. The proof of Theorems3.2 and3.3 are complete for
m = 0.

It only remains to prove Theorem3.3 for m ≥ 1. Indeed, Theorem3.1gives thatP̃
m,

→
a

is surjective for|aQ| < ηQ, since it is surjective form = 0. This map is also continuous and
injective (because it is injective form = 0), hence it is an isomorphism. ConsequentlyP̃

m,
→
a

,
|aQ| < ηQ, is an isomorphism by the open mapping theorem.

The above three theorems extend to the case of polyhedral domain in three dimensions
using the methods of [58] and [16]. The case of three dimensions will be however treated
separately, because the 3D Neumann problem is significantlymore complex, especially when
it comes to devising efficient numerical methods. The case ofNeumann–Neumann adjacent
faces in 3D cannot be treated by the methods of this paper alone, however.

4. Neumann-Neumann vertices and nonsmooth interfaces.In this section, we obtain
a new type of well-posedness for the problem (1.1) in the spacesKm

→
a

that applies also to gen-
eral interfaces and to Neumann-Neumann vertices. Our result combines the singular function
decompositions with more typical well-posedness results.Singular function decompositions
for interface problems have been discussed also in [43, 42, 66, 67] and more recently [79], to
give just a few examples.

We restrict to a special class of operatorsP , for which the spectral analysis is amenable.
Specifically, we consider the case of the Laplace operator∆, when there are Neumann-
Neumann vertices but no interface, and the case of−div A∇, with A piecewise constant,
when there are interfaces. In this last case, the operator isstill a multiple of the Laplacian on
each subdomain. Except for the explicit determination of the constantsηQ, our results extend
to variable coefficients. In both cases, we can compute explicitly the values of the weight
aQ for which the operatorP is Fredholm. These values will be used to construct the graded
meshes in Section5.

4.1. The Laplace operator. WhenP = −∆, the Laplace operator, it is possible to
explicitly determine the values of the constantsηQ appearing in Theorems3.2and3.3. In this
subsection, we therefore assume thatP = −∆ and there are no interfaces, that is,Ω = Ω1.

Recall that to a Fredholm operatorT : X → Y between Banach spaces is associated a
unique number, called theindex, defined by the formulaind(T ) = dim ker(T )−dim(Y/X).
For a discussion of Fredholm operators, see e.g., [73].

For each vertexQ ∈ V, we let αQ be theinterior angle of∂uΩ at Q. In particular,
αQ = 2π if Q is the tip of a crack, andαQ = π if Q is an artificial vertex. We then define

(4.1) ΣQ := { kπ/αQ },

wherek ∈ Z if Q ∈ V is a Neumann–Neumann vertex,k ∈ Z r {0} if Q ∈ V is a Dirichlet–
Dirichlet vertex, andk ∈ 1/2 + Z otherwise. The operator pencilPQ(τ) (or indicial family)
associated to−∆ atQ is PQ(τ) := (τ − ıǫ)2 −∂2

θ , where(r, θ) are local polar coordinates at
Q. The operatorPQ(τ) is defined on functions inH2([0, αQ]) that satisfy the given boundary
conditions, and is obtained by evaluating

(4.2) −∆(rıτ+ǫφ(θ)) = rıτ+ǫ−2
(

(τ − ıǫ)2 − ∂2
θ

)

φ(θ).
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P (τ) is invertible for allτ ∈ R, as long asǫ 6∈ ΣQ.
We are again interested in the well-posedness of the problem(1.1) when Neumann–

Neumann vertices exist. We therefore consider the operator

(4.3) ∆̃→
a

:= (∆, ∂ν) : Km+1
→
a+1

(Ω) ∩ {u|∂DΩ = 0} → Km−1
→
a−1

(Ω) ⊕Km−1/2
→
a−1/2

(∂NΩ),

which is well defined form ≥ 1. Recall that we can extend∆→
a

to the casem = 0 as

(4.4) ∆̃→
a

: H→
a

→
(

H
−

→
a

)∗
, (∆̃u, v) := −(∇u,∇v),

whereu ∈ H→
a

andv ∈ H
−

→
a

(recall thatH→
a

is defined in (2.11)). For transmission prob-
lems, a similar formula allows to extend the operator(P, ∂ν

P ) to the casem = 0.
Following Kondratiev [46] and Nicaise (for the case of transmission problems) [66] we

can prove the result below, using also the regularity theorem 3.1.
THEOREM 4.1. Let P = −∆, m ≥ 0, and

→
a = (aQ). Also, let∆̃→

a
be the operator

defined in equations(4.3) and (4.4) for the case when there is no interface. Then∆̃→
a

is
Fredholm if, and only if,aQ 6∈ ΣQ. Moreover, its index is independent ofm.

Proof. The Fredholm criterion is well known [46, 48, 76]. (The casem = 0 was not
treated explicitly, but it is proved in exactly the same way.) We prove that the index is in-
dependent ofm. Indeed, ifu ∈ H→

a
is such that∆→

a
u = 0, then the regularity theorem,

Theorem3.1, implies thatu ∈ K∞
→
a+1

(Ω). The same observation for the adjoint problem

shows that the index is independent ofm.
See also [32, 48, 76] and references therein.
The casem = 0 is relevant because in that case

(4.5)
(

∆̃→
a

)∗
= ∆̃

−
→
a
,

an equation that does not make sense (in any obvious way) for other values ofm. It is
then possible to determine the index of the operators∆̃→

a
by the following index calculation.

Recall that in this subsection we assume the interface to be empty. Let
→
a = (aQ) and

→

b = (bQ) be two vectorial weights that correspond to Fredholm operators in Theorem4.1.
Let us assume that there exists a vertexQ such thataQ < bQ but aR = bR if R 6= Q.
We count the number of values in the set(aQ, bQ) ∩ ΣQ, with the values corresponding to
k = 0 in the definition ofΣQ, equation (4.1), counted twice (because of multiplicity, which
happens only in the case of Neumann–Neumann boundary conditions). LetN be the total
number. The following result, which can be found in [66] (see also [32, 46, 47, 64, 65]),
holds.

THEOREM 4.2. Assume the conditions of Theorem4.1are satisfied. Also, let us assume
thataQ < bQ butaR = bR if R 6= Q, and letN be defined as in the paragraph above. Then

ind(∆̃→

b
) − ind(∆̃→

a
) = −N.

This theorem allows to determine the index of∆̃→
a

. For simplicity, we compute the
index only foraQ > 0 and small. LetδQ be the minimum values ofs ∈ ΣQ ∩ (0,∞). Then
δQ = π/αQ, if both sides meeting atQ are assigned the same type of boundary conditions,
and by2δQ = π/αQ otherwise.

THEOREM 4.3. Assume the conditions of Theorem4.1 are satisfied and letN0 be the
number of verticesQ such that both sides adjacent toQ are assigned Neumann boundary
conditions. We assume the interface to be empty. Then∆̃a is Fredholm for0 < aQ < δQ

with index

ind(∆̃→
a
) = −N0.
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Consequently,̃∆
−

→
a

has index−N0 for 0 < aQ < δQ.
For transmission problems, we shall count inN0 also the points where the interfaceΓ

is not smooth. Each such point is counted exactly once. On theother hand, a point where a
crack ramifies is counted as many times as it is covered in thick closureuΩ, so in effect we
are counting the vertices inuΩ and not inΩ.

Proof. Since the index is independent ofm ≥ 0, we can assume thatm = 0. A repeated
application of Theorem4.2 (more precisely of its generalization form = 0) for each weight
aQ gives thatind(∆̃→

a
) − ind(∆̃

−
→
a
) = −2N0 (each time when we change an index from

−aQ to aQ we lose a 2 in the index, because the valuek = 0 is counted twice). Since
∆̃

−
→
a

= ∆̃∗
→
a

, we haveind(∆̃
−

→
a
) = − ind(∆̃→

a
), and therefore the desired result.

We now proceed to a more careful study of the invertibility properties of∆̃→
a

. In partic-
ular, we will determine the constantsηQ appearing in Theorems3.2and3.3.

For each vertexQ ∈ V we choose a functionχQ ∈ C∞(Ω̄) that is constant equal to 1 in
a neighborhood ofQ and satisfies∂νχQ = 0 on the boundary. We can choose these functions
to have disjoint supports.

Let Ws be the linear span of the functionsχQ that correspond to Neumann–Neumann
verticesQ. (For transmission problems, we have to take into account also the points where
the interfaceΓ is not smooth. This is achieved by including a function of theform χQ for
each pointQ of the interface where the interface is not smooth. The condition ∂νχQ = 0
on the boundary becomes, of course, unnecessary.) We shall need the following version of
Green’s formula.

LEMMA 4.4. Assume allaQ ≥ 0 andu, v ∈ K2
→
a+1

(Ω) + Ws. Then

(∆u, v) + (∇u,∇v) = (∂νu, v)∂Ω.

Proof. Assume firstu andv are constant close to the vertices, then we can apply the usual
Green’s formula after smoothing the vertices without changing the terms in the formula. In
general, we notice thatC(u, v) := (∆u, v) + (∇u,∇v) = (∂νu, v)∂Ω depends continuously
onu andv (since by hypothesisaQ ≥ 0 ∀Q ) and we can then use a density argument.

Recall that we assume the interface to be empty. Then we have the following solvability
(or well-posedness) result.

THEOREM 4.5. Let
→
a = (aQ) with 0 < aQ < δQ andm ≥ 1. Assume∂DΩ 6= ∅. Then

for any f ∈ Km−1
→
a−1

(Ω) and anygN ∈ Km−1/2
→
a−1/2

(Ω), there exists a uniqueu = ureg + ws,

ureg ∈ Km+1
→
a+1

(Ω), ws ∈ Ws satisfying−∆u = f , u = 0 on ∂DΩ, and∂νu = gN on ∂NΩ.

Moreover,

‖ureg‖Km+1
→
a +1

(Ω) + ‖ws‖ ≤ C
(

‖f‖Km−1
→
a −1

(Ω) + ‖gN‖
K

m−1/2

→
a −1/2

(Ω)

)

,

for a constantC > 0 independent off andgN . When∂DΩ = ∅ (the pure Neumann problem),
the same conclusions hold if constant functions are factored out.

Proof. Using the surjectivity of the trace map, we can reduce to thecasegD = 0 and
gN = 0. LetV = {u ∈ Km+1

→
a+1

(Ω), u|∂DΩ = 0, ∂νu|∂NΩ = 0}+Ws. Sincem ≥ 1, the map

(4.6) ∆ : V → Km−1
→
a−1

(Ω)

is well defined and continuous. Then Theorem4.3 implies that the map of equation (4.6) has
index zero, given that the dimension ofWs is N0. When there is at least a side in∂DΩ, this
map is in fact an isomorphism. Indeed, it is enough to show it is injective. This is seen
as follows. Letu ∈ V be such that∆u = 0. By Green’s formula (Lemma4.4), we have
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(∇u,∇u) = (−∆u, u) + (∂νu, u)∂Ω = 0. Thereforeu is a constant. If there is at least one
Dirichlet side, the constant must be zero, i.e,u = 0. In the pure Neumann case, the kernel
of the map of equation (4.6) consists of constants. Another application of Green’s formula
shows that(∆u, 1) = 0, which identifies the range of∆ in this case as the functions with
mean zero.

The same argument as in the above proof gives that∆̃→
a

is injective, provided all compo-

nents of
→
a are non-negative, a condition that we shall write as

→
a ≥ 0). From equation (4.5),

it then follows that∆̃
−

→
a

is surjectivewhenever it is Fredholm. This observation implies

Theorem3.2 for
→
a = 0. Note that∆̃0 is Fredholm precisely when there are no Neumann–

Neumann faces. For operators of the form−div A∇ with A piecewise smooth, we have to
assume also that the interfaceΓ is smooth, otherwise the Fredholm property for the critical
weight

→
a = 0 is lost.

We can now determine the constantsηQ in Theorems3.2and3.3.
THEOREM 4.6. AssumeP = −∆. Then we can takeηQ = δQ in Theorem3.2.

Proof. Assume that|aQ| < ηQ. Then∆̃→
a

is Fredholm of index zero, sincẽ∆→
a

depends

continuously on
→
a and it is of invertible for

→
a = 0 as observed above in the context of

Theorem3.2. Assume theñ∆→
a
u = 0 for someu ∈ H→

a
. The singular function expansion

of u close to each vertex impliesu ∈ H→

b
for all

→

b = (bQ) with 0 < bQ < ηQ [47, 66],

whereηQ is the exponents of the first singular functionrsφ(θ), in polar coordinates centered
at Q. Since∆̃→

b
is injective forbQ > 0, ∆̃→

a
is injective for|aQ| < ηQ. Hence it must be an

isomorphism, as it is Fredholm of index zero.

4.2. Transmission problems.The results of the previous section remain valid for gen-
eral operators and transmission problems withΩ̄ = ∪Ω̄j , with a different (more complicated)
definition of the setsΣQ. We consider only the caseP = −div A∇u = ∆A, whereA is a
piecewise constant function. Then, on each subdomainΩj , ∆A is a constant multiple of the
Laplacian and the associated conormal derivative is a constant multiple of∂ν , ν the unit outer
normal. We assume all singular points on∂Ωj on the boundary ofΩ are in the set of ver-
tices of the adjacent domainsΩj . Moreover, we assume that the points where the interfaces
intersect are also among the vertices of someΩj .

Then for each vertexQ, the setΣQ is determined by{±
√

λ}, whereλ ranges through
the set of eigenvalues of−∂θA∂θ on H2([0, αQ]) with suitable boundary conditions. When
Q aninternal singular point, we consider the operator−∂θA∂θ onH2([0, 2π]) with periodic
boundary conditions. We still takeηQ > 0 to be the least value inΣQ ∩ (0,∞).

We define agaiñ∆→
a

= (∆A, ∂ν) but only form = 0 or 1. For m = 0, it is given as

in equation (4.4) with (∆̃Au, v) = −(A∇u,∇v). For m = 1, the transmission conditions
u+ = u− andA+∂+

ν u = A−∂−
ν u must be incorporated. HereA+ andA− are the limit

values ofA at the two sides of the interfaceΓ (notice thatA is only locally constant onΓ). In
view of Corollary3.4, we set

(4.7) ∆̃→
a

:= (∆, ∂ν) : D→
a

→ K0
→
a−1

(Ω) ⊕K1/2
→
a−1/2

(∂NΩ),

D→
a

:= {u : Ω → R, u|Ωj
∈ K2

→
a+1

(Ωj), u|∂DΩ = 0,

u+ = u−, andA+∂+
ν u = A−∂−

ν u}.

For higher values ofm, additional conditions at the interface are needed. (Theseconditions
are not included in (2.13).) We will however obtain higher regularity on each subdomain.
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The theorems of the previous section then remain true for thetransmission problem with
the following changes. In Theorem4.1, we take onlym = 0 or m = 1. In Theorem4.3, we
again assume onlym = 0 or m = 1 and inN0 we also count the number of internal vertices
(that is, the vertices on the interface that are not on the boundary). The proofs are as in
Kondratiev’s paper [46]. Theorem4.2 is essentially unchanged. In particular, we continue to
count twice0 ∈ (aQ, bQ)∩ΣQ, so thatN0 is the number of Neumann–Neumann vertices plus
the number of internal vertices. The points where the boundary conditions change (Dirichlet-
Neumann points)are notincluded in the calculation ofN0.

Let us state explicitly the form of Theorem4.5, which will be needed in applications. In
the following statement,Ws is the linear span of the functionsχQ with Q corresponding to
Neumann–Neumann verticesand internal vertices. We require that all the functionsχQ have
disjoint supports. Also, recall that for each Neumann–Neumann vertexQ, the functionχQ

satisfiesχQ = 0 on∂DΩ and∂νχQ = 0 on∂NΩ. However, the functionsχQ corresponding
to internal verticesQ need not satisfy any boundary conditions.

THEOREM 4.7. Let
→
a = (aQ) with 0 < aQ < δQ and m ≥ 1. Assume that

∂DΩ 6= ∅. Then for anyf : Ω → R such thatf |Ωj
∈ Km−1

→
a−1

(Ωj), for all j, and any

gN ∈ Km−1/2
→
a−1/2

(∂NΩ), we can find a uniqueu = ureg + ws, ureg : Ω → R, ureg|Ωj
∈

Km+1
→
a+1

(Ωj), ws ∈ Ws satisfying−div A∇u = f , u = 0 on ∂DΩ, ∂νu = gN on ∂NΩ, and

the transmission conditionsu+ = u− andA+∂+
ν u = A−∂−

ν u on the interfaceΓ. Moreover,

‖ureg‖K1
→
a +1

(Ω)+
∑

j

‖ureg‖Km+1
→
a +1

(Ωj)
+‖ws‖ ≤ C

(

∑

j

‖f‖Km−1
→
a −1

(Ωj)
+‖gN‖

K
m−1/2

→
a −1/2

(∂NΩ)

)

,

for a constantC > 0 independent off and gN . The same conclusions hold for the pure
Neumann problem if constant functions are factored.

Proof. Assume firstm = 1. Then the same proof as that of Theorem4.5 applies, since
in this case we can restrict to the boundary and apply Green’sformula. For the other values
of m we use the casem = 1 to show the existence of a solution and then use the regularity
result of Theorem3.1 in eachΩj .

We conclude this section with a few simple observations. First of all, any norm can
be used on the finite-dimensional spaceWs, as they are all equivalent. Secondly,Ws ∩
K1

→
a+1

(Ω) = 0, wheneveraQ > 0 for any Neumann–Neumann vertexQ or internalQ.

Finally, the conditionaQ ∈ (0, ηQ) can be relaxed to|aQ| < ηQ for the vertices that are
either Dirichlet-Dirichlet or Dirichlet-Neumann. We can also increaseaQ, provided that
we include more singular functions. Most importantly, since Ws ∩ K1

→
a+1

(Ω) ⊂ H1(Ω), it

follows that the solution provided by the Theorem4.7is the same as the weak solution of the
Neumann problem provided by the coercivity of the formBP onH1(Ω).

5. Estimates for the Finite Element Method. The purpose of this section is to con-
struct a sequence of (graded) triangular meshesTn in the domainΩ that give the quasi-
optimal rate of convergence for the Finite Element approximation of the mixed boundary
value/interface problem (2.13).

For this and next section we make the following conventions.We assume that the bound-
ary ofΩ and the interfaceΓ are piecewise linear and we fix a constantm ∈ N corresponding
to the degree of approximation. For simplicity, we also assume for the theoretical analysis
that there are no cracks or vertices touching the boundary, that is thatΩ = uΩ. The case
whenΩ 6= uΩ can be addressed by using neighborhoods and distances inuΩ.

5.1. A note on implementation.We include a numerical test on a domain with a crack
in Section6. In these tests, the “right” space of approximation functions consists of functions
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defined onuΩ, and not onΩ (we need different limits according to the connected component
from which we approach a crack point). Therefore the nodes used in the implementation will
include the vertices ofuΩ, countedas many times as they appear in that set.The same remark
applies to ramifying cracks, where even more points have to be considered where the crack
ramifies.

5.2. Approximation away from the vertices. We start by discussing the simpler ap-
proximation of the solutionu far from the singular points. We recall that all estimates in the
spacesKm

→
a

localize to subsets ofΩ.
Let T be a mesh ofΩ. By a mesh or a triangulation ofΩ we shall mean the same thing.

We denote bỹS(T ,m) the Finite Element space associated to the meshT . That is,S̃(T ,m)
consists of all continuous functionsχ : Ω̄ → R such thatχ coincides with a polynomial of
degree≤ m on each triangleT ∈ T . Eventually, we will restrict ourselves to the smaller
subspaceS(T ,m) ⊂ S̃(T ,m) of functions that are zero on the Dirichlet part of the boundary
∂DΩ. To simplify our presentation, we assumegN = 0 in this section although our results
extend to the casegN 6= 0. Then, the Finite Element solutionuS ∈ S(T ,m) for equation
(2.13) is given by

(5.1) a(uS , vS) :=

2
∑

i,j=1

∫

Ω

Aij∂iun∂jvndx = (f, vS), ∀vS ∈ S(T ,m).

We denote byuI = uI,T ,m ∈ S̃(T ,m) the Lagrange interpolant ofu ∈ C(Ω). We
recall its definition for the benefit of the reader. First, given a triangleT , let [t0, t1, t2] be the
barycentric coordinates onT . The nodes of the degreem Lagrange triangleT are the points
of T whose barycentric coordinates[t0, t1, t2] satisfymtj ∈ Z. The degreem Lagrange
interpolantuI,T ,m of u is the unique functionuI,T ,m ∈ S̃(T ,m) such thatu = uI,T ,m at
the nodes of each triangleTi ∈ T . The shorter notationuI will be used when only one mesh
is understood in the discussion (recall thatm is fixed). The interpolantuI has the following
approximation property [8, 27, 31, 77].

THEOREM 5.1. Let T be a triangulation ofΩ. Assume that all trianglesTi in T have
angles≥ α and sides of length≤ h. Let u ∈ Hm+1(Ω) and letuI := uI,T ,m ∈ S̃(T ,m)
be the degreem Lagrange interpolant ofu. Then, there exist a constantsC(α,m) > 0
independent ofu such that

‖u − uI‖H1(Ω) ≤ C(α,m)hm‖u‖Hm+1(Ω).

The following estimate for the interpolation error on a proper subdomain ofΩ then fol-
lows from the equivalence of theHm(Ω)-norm and theKm

→
a
(Ω)-norm on proper subsetsΩ.

Recall the modified distance functionϑ defined in equation (2.5). If G is an open subset of
Ω, we define

(5.2) Km
→
a
(G;ϑ) := {f : Ω → C, ϑ|α|−

→
a ∂αf ∈ L2(G), for all |α| ≤ m}.

and we let‖u‖Km
→
a

(G;ϑ) denote the corresponding norm.

PROPOSITION5.2. Fix α > 0 and0 < ξ < l̃. LetG ⊂ Ω be an open subset such that
ϑ > ξ onG. LetT = (Tj) be a triangulation ofΩ with angles≥ α and sides≤ h. Then for

each given weight
→
a , there existsC = C(α, ξ,m,

→
a ) > 0 such that

‖u − uI‖K1
1
(G;ϑ) ≤ C hm‖u‖Km+1

→
a +1

(G;ϑ), ∀u ∈ Km+1
→
a+1

(Ω).
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The next step is to extend the above estimates to hold near thevertices. To this end, we
consider the behavior of theKm

→
a

under appropriate dilations. Let us denote byB(Q, ℓ̃) the

ball centered at a vertexQ with radiusℓ̃. We choose a positive numberℓ̃ such that
(i) the setsVi := Ω ∩ B(Qi, ℓ̃) are disjoint,
(ii) ϑ(x) = |x − Qi| onVi,

(iii) ϑ(x) ≥ ℓ̃/2 outside the setV := ∪Vi.
We note that the spaceKm

→
a
(Vi;ϑ) depends only on the weightaQi

. Hence we will denote it

simply byKm
a (Vi;ϑ) with a = aQi

.
For the rest of this subsection, we fix a vertexQ = Qi, and with abuse of notation we

setV := Vi = Ω ∩ B(Q, l̃). We then study the local behavior with respect to dilations of
a functionv ∈ Km

→
a
(Ω) with support in the neighborhoodV of a vertexQ. Therefore, we

translate the origin to agree with Q and call again(x, y) the new coordinates. LetG be a
subset ofV such thatξ ≤ ϑ(x) ≤ l̃ on G. For any fixed0 < λ < 1, we setG′ := λG =
{λx | x ∈ G} . Then, we define the dilated functionvλ(x) := v(λx), for all (x, y) ∈ G.
We observe that sinceV is a (straight) sector, ifG ⊂ V thenG′ ⊂ V. The following simple
dilation lemma can be proved by direct calculation.

LEMMA 5.3. Let G ⊂ V and G′ = λG, 0 < λ < 1. If uλ(x) := u(λx), then
‖uλ‖Km

a (G;ϑ) = λa−1‖u‖Km
a (G′;ϑ) for anyu ∈ Km

a (V;ϑ).
Lemma5.3 and Proposition5.2 easily give the following interpolation estimate near a

vertexQ.
LEMMA 5.4. LetG′ ⊂ V be a subset such thatϑ > ξ > 0 onG′. LetT be triangulation

of G′ with angles≥ α and sides≤ h. Givenu ∈ Km+1
a+1 (V, θ), a ≥ 0, the degreem Lagrange

interpolantuI,T of u satisfies

‖u − uI,T ‖K1
1
(G′,ϑ) ≤ C(κ, α,m)ξa(h/ξ)m‖u‖Km+1

a+1
(G′,ϑ)

with C(κ, α,m) independent ofξ, h, a, andu.
This lemma will be used forξ → 0, while Proposition5.2will be used with a fixedξ.

5.3. Approximation near the vertices. We are now ready to address approximation
near the singular points. To this extent, we work with the smaller Finite Element Space
S(T ,m) defined for any meshT of Ω as

(5.3) S(T ,m) := S̃(T ,m) ∩H→
a

= {χ ∈ S̃(T ,m), χ = 0 on∂DΩ},

whereH→
a

= {u ∈ K1

1+
→
a
(Ω), u = 0 on∂DΩ}. This definition takes into account that the

variational space associated to the mixed boundary value/interface problem (1.1) is H→
a

.
REMARK 5.5. We recall that when the interface is not smooth or there are Neumman-

Neumann vertices, by Theorem3.2 for any |aQ| < ηQ the variational solutionu of (1.1) can
be writtenu = ureg + ws with ureg : Ω → R, ureg|Ωj

∈ Km+1
→
a+1

(Ωj), andws ∈ Ws. The

spaceWs is the linear span of functionsχi ∈ C∞
c (Vi), one for each Neumann-Neumann or

interface vertexQi, such thatχi equals 1 onVi and satisfied∂νχi = 0 on ∂Ω. For each
vertexQ, we therefore fixaQ ∈ (0, ηQ), and we letǫ = min{aQ}. With this choice, we
have thatureg ∈ H1+ǫ(Ω) ⊂ C(Ω), so that the interpolants ofu can be defined directly, since
Ws consists of smooth functions. Moreover, the condition thatϑ−(1+ǫ)ureg be integrable
in a neighborhood of each vertex shows thatureg must vanish at each vertex. Therefore
u(Q) = w(Q) for each Neumann-Neumann or interface vertexQ.
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FIG. 5.1.One refinement of the triangleT with vertexQ, κ = l1/l2.

We now ready to introduce the mesh refinement procedure. For each vertexQ, we choose
a numberκQ ∈ (0, 1/2] and setκ = (κQ).

DEFINITION 5.6. Let T be a triangulation ofΩ such that no two vertices ofΩ belong
to the same triangle ofT . Theκ refinement ofT , denoted byκ(T ) is obtained by dividing
each sideAB of T in two parts as follows. If neitherA nor B is a vertex, then we divideAB
into two equal parts. Otherwise, ifA is a vertex, we divideAB into AC andCB such that
|AC| = κQ|AB|.

This procedure will divide each triangleT into four triangles. (See Figure5.1). Let
us notice that the assumption that no two vertices ofΩ belong to the same triangle of the
mesh is not really needed. Any reasonable division of an initial triangulation will achieve this
condition. For instance, we suggest that if two vertices ofΩ belong to the same triangle of
the mesh, then the corresponding edge should be divided intoequal parts or in a ratio given
by the ratio of the correspondingκ constants.

DEFINITION 5.7. We define by inductionTn+1 = κ(Tn), where the initial meshT0 is
such that every vertex ofΩ is a vertex of a triangle inT0 and all sides of the interfaceΓ
coincide with sides in the mesh. In addition, we chooseT0 such that there is no triangle that
contains more than one vertex and each edge in the mesh has length≤ ℓ̃/2 (with ℓ̃ chosen as
in Section5.2).

We observe that, near the vertices, this refinement coincides with the ones introduced in
[3, 12, 17, 70] for the Dirichlet problem. One of the main results of this work is to show
that the same type of mesh gives optimal rates of convergencefor mixed boundary value and
interface problems as well.

We denote byuI,n = uI,Tn,m ∈ Sn := S(Tn,m) the degreem Lagrange interpolant
associated tou ∈ C(Ω) and the meshTn on Ω, and investigate the approximation properties
afforded by the triangulationTn close to a fixed vertexQ. The most interesting cases are
whenQ is either a Neumann-Neumann vertex or a vertex of the interface. We shall therefore
assume that this is the case in what follows. With abuse of notation we leta = aQ and
κ = κQ with κQ ∈ (0, 2−m/aQ). We also fix a triangleT ∈ T0 that hasQ as a vertex. Then
Theorem4.7gives that the solutionu of our interface problem decomposes asu = ureg +ws,
with ureg ∈ Km+1

a+1 (T ;ϑ) andws ∈ Ws, if f ∈ Km−1
→
a−1

(Ωj) andT ⊂ Ωj .

We next letTκn = κnT ∈ Tn be the triangle that is similar toT with ratio κn, has
Q as a vertex, and has all sides parallel to the sides ofT . ThenTκn ⊂ Tκn−1 for n ≥ 1
(with Tκo = T ). Furthermore, sinceκ < 1/2 and the diameter ofT is ≤ ℓ̃/2, we have
Tκj ⊂ V = B(O, ℓ̃)∩Ω for all n ≥ 0. Recall that we assume all functions inWs are constant
on neighborhoods of vertices. We continue to fixT ∈ T0 with vertexQ. The following
interpolation estimate holds.

LEMMA 5.8. Let 0 < κ = κQ ≤ 2−m/aQ and0 < a = aQ < ηQ. Let us denote by
TκN = κNT ⊂ T the triangle with vertexQ obtained fromT afterN refinements. LetuI,N

be the degreem Lagrange interpolant ofu associated toTN . Then, ifu ∈
(

Km+1
a+1 (V;ϑ) +
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Ws

)

∩ {u|∂DΩ = 0} onTκN ∈ TN , we have

‖u − uI,N‖K1
1
(TκN ;ϑ) ≤ C2−mN‖ureg‖Km+1

a+1
(TκN ;ϑ),

whereC depends onm andκ, but not onN .
Proof. By hypothesisu = ureg + w, with ureg ∈ Km+1

a+1 (Ω) andw ∈ Ws. To simplify
the notation, we letφ = ureg. By Remark5.5, if N is large enough we can assume that
w = u(Q) a constant onTκN . We again denote the dilated functionφλ(x, y) = φ(λx, λy),
where(x, y) are coordinates atQ and0 < λ < 1. We chooseλ = κN−1. Then,φλ(x, y) ∈
Km+1

a+1 (Tκ;ϑ) by Lemma5.3. We next introduce the auxiliary functionv = χφλ on Tκ,
whereχ : Tκ → [0, 1] is a smooth function that depends only onϑ and is equal to 0 in a
neighborhood ofQ, but is equal to 1 at all the nodal points different fromQ. Consequently,

‖v‖2
Km+1

1
(Tκ;ϑ)

= ‖χφλ‖2
Km+1

1
(Tκ;ϑ)

≤ C‖φλ‖2
Km+1

1
(Tκ;ϑ)

,

whereC depends onm and the choice of the nodal points. Moreover, sinceφ(Q) = 0 by
Remark5.5, the interpolant ofv if given by vI = (φλ)I = (φI)λ on Tκ. We also observe
that the interpolant ofw on TκN is equal tow, because they are both constants, and hence
u − uI = φ − φI . Therefore

‖u − uI‖K1
1
(TκN ;ϑ) = ‖φ − φI‖K1

1
(TκN ;ϑ) = ‖φλ − φλI‖K1

1
(Tκ;ϑ)

= ‖φλ − v + v − φλI‖K1
1
(Tκ;ϑ) ≤ ‖φλ − v‖K1

1
(Tκ) + ‖v − φλI‖K1

1
(Tκ;ϑ)

= ‖φλ − v‖K1
1
(Tκ;ϑ) + ‖v − vI‖K1

1
(Tκ;ϑ) ≤ C‖φλ‖K1

1
(Tκ;ϑ) + C‖v‖Km+1

1
(Tκ;ϑ)

≤ C‖φλ‖K1
1
(Tκ;ϑ) + C‖φλ‖Km+1

1
(Tκ;ϑ) = C‖φ‖K1

1
(TκN ;ϑ) + C‖φ‖Km+1

1
(TκN ;ϑ)

≤ CκNa‖φ‖Km+1

a+1
(TκN ;ϑ) ≤ C2−mN‖φ‖Km+1

a+1
(TκN ;ϑ) = C2−mN‖ureg‖Km+1

a+1
(TκN ;ϑ),

which gives the desired inequality. The second and the eighth relations above are due to
Lemma5.3, and the sixth is due to Proposition5.2.

We now combine the bounds onTκN of the previous lemma with the bounds on sets of
the formTκj rTκj+1 of Lemma5.4to obtain the following estimate on an arbitrary, but fixed,
triangleT ∈ T0 that has a vertexQ in common withΩ (the more difficult case not handled
by Proposition5.2).

PROPOSITION5.9. Let T ∈ T0 such that a vertexQ of T belongs toV. Let0 < κQ ≤
2−m/aQ , 0 < aQ < ηQ. Then there exists a constantC > 0, such that

‖u − uI,N‖K1
1
(T ;ϑ) ≤ C2−mN‖ureg‖Km+1

a+1
(T ;ϑ),

for all u = ureg + w, wherew ∈ Ws andureg ∈ K1
a+1(Ω) is such thatureg ∈ Km+1

a+1 (Ωj),
for all j.

Proof. As before, we setκQ = κ andaQ = a. As in the proof of Lemma5.8, we have
u−uI = ureg −ureg,I . We may thus assume thatu = ureg. The rest is as in [17, 18].

REMARK 5.10. If T denotes the union of all the initial triangles that contain vertices of
Ω, thenT is a neighborhood of the set of vertices inΩ. Furthermore, the interpolation error on
T is obtained as‖u − uI‖K1

1
(T;ϑ) ≤ C2−mN‖ureg‖Km+1

a+1
(T;ϑ) by summing up the squares of

the estimates in Proposition5.9over all the triangles, as long asκQ is chosen appropriately.
We now combine all previous results to obtain a global interpolation error estimate onΩ.
THEOREM 5.11. Let m ≥ 1 and for each vertexQ ∈ V fix 0 < aQ < ηQ and

0 < κQ < 2−m/aQ . Assume that the conditions of Theorem4.7 are satisfied and letu
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be the corresponding solution problem(2.13) with f : Ω → R such thatf ∈ Km−1
→
a−1

(Ωj)

for all j. Let Tn be the n-th refinement of an intial triangulationTo as in Definition5.7.
Let Sn := Sn(Tn,m) be the associated Finite Element space given in equation(5.3) and let
un = uSn

∈ Sn be the Finite Element solution defined in(5.1). Then there existsC > 0 such
that

‖u − un‖K1
1
(Ω) ≤ C2−mn

∑

j

‖f‖Km−1
→
a −1

(Ωj)
.

Proof. Let Ti be the union of initial triangles that contain a given vertexQi. Recall from
Theorem4.7that the solution of problem (2.13) can be written asu = ureg +w with w ∈ Ws

and‖w‖ +
∑

j ‖ureg‖Km+1
→
a +1

(Ωj)
≤ C

∑

j ‖f‖Km−1
→
a −1

(Ωj)
. Becauseu − uI = ureg − ureg,I on

Vi, we use the previous estimates to obtain

‖u − un‖K1
1
(Ω) ≤ C‖u − uI‖K1

1
(Ω)

≤ C
∑

j

(

‖u − uI‖K1
1
(Ωjr∪Ti;ϑ) +

∑

‖ureg − ureg,I‖K1
1
(Ωj∩Ti;ϑ)

)

≤ C2−mn
∑

j

(

‖u‖Km+1

1
(Ωjr∪Ti;ϑ) +

∑

j

‖ureg‖Km+1
→
a +1

(Ωj∩Ti;ϑ))

≤ C2−mn(
∑

j

‖ureg‖Km+1
→
a +1

(Ωj)
+ ‖w‖) ≤ C2−mn

∑

j

‖f‖Km−1
→
a −1

(Ωj)
.

The first inequality is based on Céa’s Lemma and the second inequality follows from Propo-
sitions5.2and5.9.

We can finally state the main result of this section, namely the quasi-optimal convergence
rate of the Finite Element solution computed using the meshesTn.

THEOREM 5.12. Under the notation and assumptions of Theorem5.11, un = uSn
∈

Sn := S(Tn,m) satisfies

‖u − un‖K1
1
(Ω) ≤ C dim(Sn)−m/2

∑

j

‖f‖Km−1
→
a −1

(Ωj)
,

for a constantC > 0 independent off andn.
Proof. Let againTn be the triangulation ofΩ aftern refinements. Then, the number of

triangles isO(4n) given the refinement procedure of Definition5.6. Thereforedim(Sn) ≃ 4n

so that Theorem5.11gives

‖u − un‖K1
1
(Ω) ≤ C2−nm

∑

j

‖f‖Km−1

a−1
(Ωj)

≤ C dim(Sn)−m/2
∑

j

‖f‖Km−1

a−1
(Ωj)

.

The proof is complete.
Using thatHm−1(Ωj) ⊂ Km−1

→
a−1

(Ωj) if aQ ∈ (0, 1) for all verticesq, we obtain the

following corollary.
COROLLARY 5.13. Let 0 < aQ ≤ min{1, ηQ} and0 < κQ < 2−m/aQ for each vertex

Q ∈ V. Then, under the hypotheses of Theorem5.12,

‖u − un‖H1(Ω) ≤ C‖u − un‖K1
1
(Ω) ≤ C dim(Sn)−m/2‖f‖Hm−1(Ω),

for a constantC > 0 independent off ∈ Hm−1(Ω) andn.
Note that we do not claim thatu ∈ K1

1(Ω) (which is in general not true).
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TABLE 6.1
Convergence history for a crack domain.

j\κ e : κ = 0.1 e : κ = 0.2 e : κ = 0.3 e : κ = 0.4 e : κ = 0.5
3 0.76 0.79 0.79 0.83 0.77
4 0.88 0.90 0.89 0.82 0.76
5 0.94 0.95 0.91 0.79 0.70
6 0.97 0.97 0.92 0.76 0.63
7 0.99 0.98 0.91 0.73 0.57
8 0.99 0.98 0.91 0.71 0.54
9 1.00 0.99 0.90 0.69 0.52

6. Numerical tests. In this section, we present numerical examples which test for the
quasi-optimal rates of convergence establisheda priori in the previous section. The conver-
gence history of the Finite Element solution supports our results. Recall the Finite Element
solutionun ∈ Sn is defined by

a(un, vn) :=
2

∑

i,j=1

∫

Ω

Aij∂iun∂jvndx = (f, vn), ∀vn ∈ Sn.

To verify the theoretical prediction, we focus on the more challenging problem where
Neumann-Neumann vertices and interfaces are present. We start by testing different con-
figurations of mixed Dirichlet/Neumann boundary conditions, but no interface, on several
different domains for the simple model problem (6.1),

(6.1) −∆u = 1 in Ω, u = 0 on ∂DΩ, ∂νu = 0 on ∂NΩ.

In particular, we consider non-convex domainsΩ with a crack. In this case, the optimal grad-
ing can be computed explicitly beforehand. We then perform atest for the model transmission
problem

(6.2) −div(a(x, y)∇u) = 1 in Ω, u = 0 on ∂Ω,

wherea is a piece-wise constant function. We have run also a few tests with m = 2, which
also seem to confirm our theoretical results. However, more refinement steps seem to be
necessary in this case to achieve results that are as convincing as in the casem = 1. Thus
more powerful (i. e., faster) algorithms and codes will needto be used to test the casem = 2
completely.

6.1. Domains with cracks and Neumann-Neumann vertices.We discuss the results
of two tests for the mixed boundary value problem (6.1). In the first test, we impose pure
Dirichlet boundary conditions, i. e., we take∂DΩ = ∂, but on a domain with a crack. Specifi-
cally, we letΩ = (0, 1)× (0, 1)r{(x, 0.5), 0 < x < 0.5} with a crack at the point(0.5, 0.5);
see Figure6.1. The presence of the crack forces a singularity forH2 solutions at the tip of
the crack. By the arguments in Section4, any mesh grading0 < a < η = π/2π = 1/2
should yield quasi-optimal rates of convergence as long as the decay ratioκ of triangles in
subsequent refinements satisfiesκ = 2−1/a < 2−1/η = 0.25 near the crack tip. In fact, in
this case the solution isH2 away from the crack, but is only inHs, s < 1 + η = 1.5, near
the crack (following [46]). Recall that the mesh sizeh after j refinements isO(2j). Thus,
quasi-uniform meshes should give a convergence rate no better thanh0.5 [78].
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FIG. 6.1.The domain with a crack: initial triangles (left); the triangulation after one refinement,κ = 0.2 (right).

FIG. 6.2. Initial triangles for a Neumann-Neumann vertexQ (left); the triangulation after one refinement,
κ = 0.2 (right).

In the second test,Ω is the non-convex domain of Figure6.2 with a reentrant vertex
Q. The interior angle atQ is 1.65π. We impose Neumann boundary conditions onboth
sides adjacent to the vertexQ, and Dirichlet boundary conditions on other edges. Again,
anH2 solution will have a singularity at the reentrant corner In this case, the arguments of
Sections4 and5 imply that we can take0 < a < η = π/1.65π ≈ 0.61 for the mesh grading,
and consequently, the quasi-optimal rates of convergence should be recovered as long as the
decay ratioκ of triangles in subsequent refinements satisfiesκ = 2−1/a < 2−1/η ≈ 0.32
nearQ.

The convergence history for the FEM solutions in the two tests are given respectively in
Table6.1 and Table6.2. Both tables confirm the predicted rates of convergence. Theleft-
most column in each table of this section contains the numberof refinements from the initial
triangulation of the domain. In each of the other columns, welist the convergence rate of the
numerical solution for the problem (6.1) computed by the formula

(6.3) e = log2 (
|uj−1 − uj |H1

|uj − uj+1|H1

),

whereuj is the Finite Element solution afterj mesh refinements. Therefore, since the dimen-
sion of the spaceSn grows by the factor of 4 with every refinement for linear finiteelement
approximations,e should be very close to 1 if the numerical solutions yield quasi-optimal
rates of convergence, an argument convincingly verified in the two tables. In Table6.2, for
example, we achieve quasi-optimal convergence rate whenever the decay ratioκ < 0.32,
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FIG. 6.3.The numerical solution for the mixed problem with a Neumann-Neumann vertex.

TABLE 6.2
Convergence history in the case of a Neumann-Neumann vertex.

j\κ e : κ = 0.1 e : κ = 0.2 e : κ = 0.4 e : κ = 0.5
3 0.91 0.93 0.95 0.94
4 0.96 0.97 0.97 0.96
5 0.98 0.99 0.98 0.95
6 0.99 1.00 0.98 0.93
7 1.00 1.00 0.97 0.89
8 1.00 1.00 0.96 0.84

sincee → 1 after a few refinements. On the other hand, ifκ > 0.32, the convergence rates
decrease with successive refinements due to the effect of thesingularity atQ. In fact, for
κ = 0.5 we expect the values ofe to approach0.61, which is the asymptotical convergence
rate on quasi-uniform meshes for a function inH1.61.

6.2. Domains with artificial vertices. We discuss again a test for the model mixed
boundary value problem (6.1), but now we test convergence in the presence of an artificial
vertex, where the boundary conditions change on a given side. We take the domain to be the
unit squareΩ = (0, 1) × (0, 1) and we impose the the mixed boundary conditions∂NΩ =
{(x, 0), 0 < x < 0.5}, ∂DΩ = Ω r ∂NΩ (see Figure6.4). In this case, the solution isH2

near all geometric vertices, as the interior angle isπ/2 , but it does possess a singularity at
the artificial vertexQ = (0.5, 0), where the boundary conditions change. Near such a vertex,
the maximum mesh grading from Section4 is ηQ = 0.5π/π = 0.5. Then, quasi-optimal
rates of convergence can be obtained on graded meshes if the decay ratioκ of triangles in
subsequent refinements satisfies0 < κ = 2−1/a < 2−1/η = 0.25 near the singular point
(0.5, 0). The optimal rate is again supported by the convergence history of the numerical
solution in Table6.3.

6.3. Transmission problems.We discuss finally a test for the model transmission prob-
lem (6.2), The singularities in the solution arise from jumps in the coefficienta across the in-
terface. As discussed in Section5, quasi-optimal rates of convergence can be achieveda pri-
ori by organizing triangles in the initial triangulation so that each side on the interface is a side
of one the triangles as well. We verifya posteriorithat this construction yields the predicted
rates of convergence. We choose the domain again to be the squareΩ = (−1, 1) × (−1, 1)
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FIG. 6.4. The domain with an artificial vertex: initial triangles (left); the triangulation after four refinements,
κ = 0.2 (right).

TABLE 6.3
Convergence history in the case of an artificial vertex.

j\κ e : κ = 0.1 e : κ = 0.2 e : κ = 0.3 e : κ = 0.4 e : κ = 0.5
3 0.84 0.87 0.87 0.84 0.81
4 0.91 0.93 0.91 0.85 0.77
5 0.95 0.95 0.91 0.82 0.70
6 0.97 0.96 0.91 0.78 0.63
7 0.99 0.97 0.90 0.75 0.57
8 0.99 0.98 0.90 0.72 0.54
9 1.00 0.98 0.89 0.70 0.52

with a single, but nonsmooth, interfaceΓ as in Figure6.5, which identifies two subdomains
Ωj , j = 1, 2. We also pick the coefficienta(x, y) in (6.2) of the form

a(x, y) =

{

1 on Ω1,

30 on Ω2.

The large jump across the interface makes the numerical analysis more challenging. The
solution of (6.2) may have singularities inH2 at the pointsQ1 = (−1, 1), Q2 = (1, 0) where
the interface joins the boundary, and atQ3 = (0, 0), which is a vertex for the interface (there
are no singularities again inH2 at the square geometric vertices).

Again based on the results of Sections4 and5, for each singular pointQi, i = 1, 2, 3,
there exists a positive numberηi, depending on the interior angle and the coefficients, such
that, if the decay rateκi of triangles in successive refinements satisfies0 < κi < 2−1/ηi near
each vertexQ1, quasi-optimal rate of convergence can be obtained for the finite element so-
lution. We observe that the solution belongs toH2 in the neighborhood of a vertex, whenever
ηi ≥ 1, and therefore, a quasi-uniform mesh near that vertex is sufficient in this case.

Instead of computingηi explicitly, as a formula is not readily available, we test different
values ofκi < 0.5 near each singular points until we obtain values ofe approaching1. This
limit signals, as discussed above, that we have reached quasi-optimal rates of convergence for
the numerical solution. The value ofe is given in equation (6.3). Once again, the convergence
history in Table6.4strongly supports the theoretical findings. In particular,no special mesh
grading is needed near the points(−1, 1) and(1, 0). Near the internal vertex(0, 0), however,
we found the optimal grading ratio to beκ3 ∈ (0.3, 0.4), in agreement with the results of
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FIG. 6.5. The transmission problem: initial triangles (left); the triangulation after four refinements,κ = 0.2
(right).

FIG. 6.6.The numerical solution for the transmission problem.

Theorem4.7 and Theorem5.12. Figure6.5 shows the mesh refinement near(0, 0) when
κ = 0.2.

We notice that our tests involve values ofκ that are very small, yet the optimal conver-
gence rate is preserved. We expect, however, that ifκ becomes even smaller, it may take
longer to observe the optimal rate of convergence. On the other hand, the angle condition
is not an issue, by the results of Babuška and Aziz, who have shown that the problem arises
when some angles of the triangles become large [9]. In fact, in our refinement, the maximum
size of the resulting angles does not increase with each refinement. This maximum size can
also be chosen not to be too large in the initial triangulation, and hence in all triangulations.
However, asκ becomes smaller, our procedure leads to smaller and smallerangles, although
the minimum size of these angles do not decrease with each refinement. Even the smallness
of the angles can be dealt with by choosing a different methodof dividing the triangles close
to the singularities, leading to a slightly different graded mesh, as in [52]. The constantκQ

associated to each singular pointQ will be the same in the new family of graded meshes.
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TABLE 6.4
Convergence history for the transmission problem.

j\κ e : κ = 0.1 e : κ = 0.2 e : κ = 0.3 e : κ = 0.4 e : κ = 0.5
3 0.82 0.83 0.84 0.83 0.78
4 0.91 0.91 0.91 0.90 0.83
5 0.97 0.97 0.96 0.94 0.86
6 0.99 0.99 0.98 0.95 0.85
7 1.00 0.99 0.99 0.95 0.82
8 1.00 1.00 1.00 0.95 0.80

The methods used in this paper can be generalized to deal withpolyhedral domains in
three dimensions. See [19] and the references therein. However, the resulting algorithm is
significantly more complicated and it leads to meshes that donot satisfy the minimum angle
condition. On the other hand, for point singularities such as the ones arising in the study
of Schr̈odinger operators, this procedure simplifies and is almost identical to the one in two
dimensions presented here [15, 41].

6.4. Conclusion. It is well known that the singular solutions of elliptic equations in
polyhedral domains can be conveniently studied using the weighted Sobolev spacesKm

a .
However, the classical results on solvability (i. e., well-posedness) in weighted spacesKm

a

do not extend to the case of boundary-value problems where adjacent sides of a corner are
endowed with Neumann boundary conditions, or to transmission problems. In this paper,
we succeed to establish new a priori estimates (well-posedness, regularity and the Fredholm
property) for the solution of the transmission problem (1.1) in augmented weighted Sobolev
spaces (see Section4) in the presence of non-smooth interfaces and Neumann–Neumann
vertices. Using these theoretical results, we construct a class of graded meshes that recover
the optimal rate of convergence of the Finite Element approximation. Our numerical tests for
different problems give convincing evidence of the improvement in the convergence rate on
these graded meshes. The use of augmented weighted Sobolev spaces in the analysis of other
numerical methods for these transmission problems, for example in the study of the adaptive
Finite Element Method, is a promising future direction of our research [59, 63].
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[67] S. NICAISE AND A. SÄNDIG, General interface problems. I, II, Math. Methods Appl. Sci., 17 (1994),

pp. 395–429, 431–450.
[68] C. PESKIN, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25 (1977), pp. 220–252.
[69] M. PETZOLDT, Regularity results for laplace interface problems in two dimensions, Z. Anal. Anwendungen,

20 (2001), pp. 431–455.
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