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Abstract. We develop LNG FEM, a software package for graded mesh gen-
eration and for solving elliptic equations. LNG FEM generates user-specified
graded meshes on arbitrary 2D domains with straight edges for different bound-
ary conditions. We shall focus on a detailed exposition on the implementation
of the software. In addition, we demonstrate that LNG FEM is equipped with
advanced algorithms and data structures to perform efficiently in numerical
tests. We hope that LNG FEM can broaden the use and understanding of
graded mesh in the finite element approximation of singular solutions.

We develop a software package entitled LNG FEM, which comes from “Linear
Graded Finite Element Method”. LNG FEM is a free software package, written in
C, for the generation of graded meshes in general 2D domains with polygonal struc-
tures [6, 7, 11], and for the construction of linear finite element solutions of elliptic
boundary value problems. As a by-product of our research on numerical approxi-
mations of singular functions, LNG FEM is a fast, memory-efficient, user-friendly
package that can handle different boundary conditions. LNG FEM is designed for
studying and demonstrating grading algorithms, as well as educating students on
the finite element method.

This expository article shall mainly present instructions on the use of LNG FEM
(Section 2). In Section 3, we also briefly describe several features on the algorithms
and data structures, which make LNG FEM a reliable and efficient software pack-
age feasible for various problems. We keep the package up-to-date. Suggestions to
improve the software in any aspect are welcome.

1. Graded meshes

It is well known that elliptic boundary value problems may have singular so-
lutions, even when the given data is smooth. Some typical situations that lead to
singular solutions include: non-smooth domains, changes in boundary conditions,
interfaces (especially the non-smooth ones) in transmission problems, and differen-
tial operators with non-smooth coefficients. Various numerical schemes have been
developed to improve the convergence rate of the finite element approximations of
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Figure 1. The initial triangle ABC (left); the uniform refinement,
κ = 0.5 (center); the κ-refinement with κ < 0.5 for vertex A (right),
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these singular solutions. Among these numerical schemes, based on a priori esti-
mates of the equation in special function spaces [5, 9, 8, 13], mesh grading has
proved to be a powerful technique [1, 4, 3, 2, 10, 11, 12, 14].

Consider the following model problem in a polygonal domain Ω with the mixed
boundary condition,

(1.1) −Δu = f in Ω, ∂νu = 0 on ∂ΩN , u = 0 on ∂ΩD.

Assuming a smooth f , let S ⊂ Ω̄ be the set of singular points near which the
solution u is not locally in H2. Then, there is a systematic construction of graded
meshes [3, 11, 14] to deal with the lack of regularity of the solution at those points.

Definition 1.1. Let T be a triangulation of Ω. We require that every point
in S be a vertex in T and no two singular points belong to the same triangle. For
each point in S, define a grading parameter κ ∈ (0, 1/2]. Then the κ-refinement
of T , denoted by κ(T ) is obtained by dividing each edge AB of T in two parts
as follows. If neither A nor B is a singular point, then we divide AB into two
equal parts. Otherwise, if A ∈ S, we divide AB into AC and CB such that
|AC| = κ|AB|. This procedure will divide each triangle of T into four triangles..
Let T0 be an initial triangulation with the above properties. Then, we define by
induction Tn+1 = κ(Tn).

For each point in the singular set S, there is an optimal range for the grading
parameter κ [3, 11], determined by the regularity estimate of the solution u in
weighted Sobolev spaces. Once κ is chosen within that range, the graded mesh
Tn yields finite element approximations of equation (1.1) with optimal convergence
rates. (This result applies to general uniformly strongly elliptic equations mentioned
above with various singular solutions.)

2. Instructions

One of the purposes of the software package LNG FEM is to encourage a
broader understanding and use of graded meshes for the finite element approxi-
mation of singular solutions of elliptic PDEs. Therefore, in addition to ensuring
the reliability and efficiency of the algorithms, we also try to maintain a friendly
user interface. The main features of LNG FEM include:
1. Modularization. Related algorithms and data structures are grouped in dif-
ferent modules for easy updates and modification; input files and outputs of the
program are bundled in two directories (/Sourcefiles and /Results, respectively), to
simplify the initialization of the program and the analysis of the results afterwards.
2. Generality. The user is allowed to set up various parameters such as the
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Figure 2. An initial triangulation of the L-shape domain with the
Dirichlet boundary condition: the numbering of nodes and triangles.

computational domain, boundary conditions, and the grading parameter for each
specific singular point, by customizing the input files. The current model problem
in the package is equation (1.1) with f = 1. It is possible to work on more general
equations by updating the corresponding module in the package.
3. Efficiency. LNG FEM is equipped with advanced algorithms that perform
efficiently in terms of storage and speed. We thus managed to minimize the time
for mesh generation and matrix assembling. Details will be discussed in Section 3.
4. Analysis of the result. LNG FEM can either compute the numerical solution
on the current mesh or compare the current numerical solution with the solution
from the previous mesh to provide the convergence rate. The mesh and the solution
can be visualized easily in MATLAB with embedded commands in the package.

We now provide a detailed instruction on the implementation of the package.

2.1. Source files. After unzipping the downloaded file, we shall have created
the directory /LNG FEM, including two sub-directories (/Sourcefiles and /Results)
and several other files. Note that the the executable file is .out. In particular,
/Sourcefiles contains information on the initial triangulation, boundary conditions,
and grading parameters. We elaborate on the settings in /Sourcefiles by taking the
mesh in Figure 2 as an example.

Below are the rules for the initial triangulation.
1. Any vertex or singular point of the domain is an initial node.
2. An initial triangle cannot contain more than one singular point of the domain.
3. Any node cannot have more than six adjacent triangles.
4. Suppose that there are n initial triangles. The numbering of the triangles can be
any one of the n! permutations of the set {i, 1 ≤ i ≤ n}. Figure 2 shows only one
possible numbering. Suppose there are l singular points and m non-singular nodes
in the initial nodes. Then, the numbering of the singular nodes can be any one of
the l! permutations of the set {i, 1 ≤ i ≤ l}; the numbering of the non-singular
nodes can be any one of the m! permutations of the set {i, l+ 1 ≤ i ≤ l+m}. For
example, ”1” has to be assigned to the node on the re-entrant corner in Figure 2,
because it is the only singular point. The numbering of the other seven nodes can
be any one of the 7! permutations of the set {i, 2 ≤ i ≤ 8}.

More precisely, as in Figure 3, for LNG Initialnode.txt, the integer in the
first row indicates the number of nodes (eight nodes in Figure 2). Starting from
the second row, the ith row, i ≥ 2, lists the coordinates (x, y) of the (i− 1)st initial
node. (The second node is (1, 0), for example.) LNG Initialtriangle.txt contains
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Figure 3. Files (in the directory /Sourcefiles) for the triangulation
in Figure 2 with the grading parameter κ = 0.2: LNG Initialnode.txt
(left), LNG Dedge.txt (top), LNG Initialtriangle.txt (right),
LNG Ratiocontrol.txt (bottom).

information on initial triangles. The first number in the file stands for the number
of initial triangles, while the three-tuple in the ith row, i ≥ 2, identifies the vertices
of the (i− 1)st triangle with the numbering of vertices in the ascending order. For
example, since the third triangle in Figure 2 has vertices 1, 6, and 8, the 4th row of
LNG Initialtriangle.txt is 1 6 8 in Figure 3. With these two source files, it suffices
to pass all geometric information of the domain to the program.

LNG Dedge.txt is to specify boundary conditions, namely, the Dirichlet and
Neumann edges, respectively. The first integer in the first row represents the num-
ber of non-duplicate endpoints (each point counted only once) of Dirichlet edges; the
second integer is the number of Dirichlet edges. The integers in the second row are
the numberings of the endpoints of Dirichlet edges. For example, LNG Dedge.txt in
Figure 3 implies that there are eight Dirichlet nodes and eight Dirichlet edges. The
Dirichlet edges are 1−2, 2−3, · · · , and 8−1, imposing the pure Dirichlet condition
on the L-shape domain. Mixed boundary conditions can be imposed similarly.

LNG Ratiocontrol.txt controls the grading parameter κ ∈ (0, 1/2] (Figure
1) for specified singular nodes. The first integer of the file is the number of singular
nodes, while the decimal in the ith row, i ≥ 2, is the grading parameter for the
(i−1)st singular node. As in LNG Ratiocontrol.txt (Figure 3), there is one singular
node on the L-shape domain (the first node) and the grading parameter is κ = 0.2.

Source files for some typical domains and boundary conditions (cracks, mixed
boundary conditions, multiple singular nodes, etc.) can be found in LNG Demo,
which is downloadable on our web page. To implement these files, one can simply
replace the original files in /Sourcefiles by the source files given in LNG Demo.

2.2. Outputs. With all the source files ready, one can open a command ter-
minal and enter the directory /LNG FEM. To implement, type ./LNG FEM.out in
the terminal and follow the on-screen instructions (Figure 4).

Note that if we choose to compare consecutive solutions, it calculates the H1-
error between the current numerical solution and the solution from last implemen-
tation. Therefore, to compare solutions on the third-level mesh and on the 4th-level
mesh, we need to compute the solution on the third level first and make another
run on the 4th level for the comparison.

All the outputs are automatically placed into the directory /Results, with a
MATLAB-recognizable format for the visualization of solutions. We prepared two
.m files LNG MESH.m and LNG PLOT.m in the package, for graphing graded
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Figure 4. The interface of LNG FEM.

Figure 5. MATLAB graphs the 4th-level graded mesh (left) and the
corresponding solution (right) on the L-shape domain from the initial
triangulation in Figure 2.

meshes and solutions, respectively. After launching MATLAB, set the current
directory to be /LNG FEM. Figure 5 shows a screen shot of MATLAB and the
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Figure 6. The graded mesh toward the tip of crack at the center of
the domain after four refinements (left), κ = 0.2; the corresponding
numerical solution of equation (1.1) (right).

resulting pictures of these commands. As a reminder, if we choose to compare
solutions, LNG FEM does not export the current mesh or the current solution.

The files in /Results are: LNG Node.txt including the coordinates of nodes;
LNG Triangle.txt containing the vertex numbering of triangles; LNG U.txt being
the finite element solution; LNG Rtp.txt specifying the triangles a node belongs to.
LNG E.txt is for graphing and LNG Pre.txt is the number of nodes in the mesh.

2.3. The processing flow and examples. We provide a concise diagram
below for the working procedure of LNG FEM. In addition, besides for the L-shape
domain, we include other examples (Figures 6 – 8) from the package for illustrations.

3. Algorithms

We used a compact format [15] to store sparse matrices and vectors. Pointers
were used to assign and release vectors dynamically to minimize the use of the
memory. In particular, the memory needed for LNG FEM to generate meshes,
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Figure 7. The graded mesh toward the point where the boundary
condition changes, κ = 0.2, level=5 (left); the corresponding numerical
solution of equation (1.1) (right).

Figure 8. The graded mesh after four refinements for distinct singular
points: re-entrant corner, κ = 0.3, and the point where the boundary
condition changes, κ = 0.2 (left); the corresponding numerical solution
for equation (1.1) (right).

Figure 9. The processing time for LNG FEM.

assemble matrices, solve the system of equations, and to compare solutions, is
linearly dependent of the problem size. For example, starting with eight initial
triangles, as for the domain with a crack (Figure 6), LNG FEM needs 1.7GB of
memory to refine the mesh 10 times, which generates 223 ≈ 8.4×106 triangles; and
it needs 430MB of memory for the 9th refinement, with 221 ≈ 2.1 × 106 triangles.
Therefore, we can easily go up to the 10th level on regular desktops and more on
relatively powerful machines.
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The algorithms for the mesh generation and matrix assembling were carefully
designed, such that the computational cost in the final triangulation almost linearly
depends on the number of triangles. We timed the program for 10 consecutive
refinements on the original domain with eight triangles for the crack problem (Linux
Redhat 9.0 with two 2.8GHz Intel Xeon processors and 2GB of memory, Figure 9).
It takes unnoticeable little time for LNG FEM to generate 217 ≈ 1.3×105 triangles,
6 seconds to generate 2.1 million triangles, and 24 seconds to generate 8.4 million
triangles. Assembling the matrix takes a little longer, namely 32 seconds.

In fact, the most time consuming part is solving the system of equations. With
the built-in PCG solver, it takes about 20 minutes for the 9th level. In fact, it is the
only module that is not optimized in LNG FEM. We are working on a multigrid
solver which will definitely lead to a speed boost for the program.
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