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Abstract: Consider the Poisson equation in a polyhedral domain with mixed boundary conditions. We estab-

lish new regularity results for the solution with possible vertex and edge singularities with interior data in

usual Sobolev spacesHσ with σ ∈ [0, 1).We propose anisotropic finite element algorithms approximating the

singular solution in the optimal convergence rate. In particular, our numerical method involves anisotropic

graded meshes with fewer geometric constraints but lacking the maximum angle condition. Optimal con-

vergence on such meshes usually requires the pure Dirichlet boundary condition. Thus, a by-product of our

result is to extend the application of these anisotropic meshes to broader practical computations with the

price to have “smoother” interior data. Numerical tests validate the theoretical analysis.

Keywords: Anisotropic Mesh, Edge and Vertex Singularity, Optimal Convergence, Maximum Angle

Condition, Mixed Boundary Condition
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1 Introduction

Consider the elliptic problem associated with the Laplace operator in a bounded polyhedral domain Ω ⊂ ℝ3

with the mixed boundary condition

{{{
{{{
{

−∆u = f in Ω,

u = 0 on Γ
Dir
,

∂nu = 0 on Γ
Neu

,

(1.1)

where Γ
Dir

and Γ
Neu

are open subsets of the boundary ∂Ω such that Γ
Dir
∪ Γ

Neu
= ∂Ω. For simplicity, we sup-

pose that each face of ∂Ω is included either in Γ
Dir

or in Γ
Neu

and Γ
Dir
̸= 0. The solution of equation (1.1) is

uniquely defined in H1

Γ
Dir

(Ω) (see (2.1)) for f ∈ (H1

Γ
Dir

(Ω)) (cf. [15, 23]). The solution regularity, however, is

determined by the smoothness of the given function, the geometry of the domain and the boundary condi-

tions. Let us refer to the non-smooth boundary points and the points where the boundary condition changes

as singular points. Then, even for a smooth function f , the solution may possess singularities in high-order

Sobolev spaces near the singular points [13, 16, 18, 19]. These singularities, often being themain theoretical

concern, can also severely deteriorate the efficacy of the numerical approximation.

For equation (1.1), the singular points are in fact the non-smooth boundary points (namely, vertices and

edges), provided that each face is either in Γ
Dir

or in Γ
Neu

. Then, given a sufficiently smooth function f , there
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are two types of solution singularities near the singular points in Ω̄: the vertex singularity and the anisotropic

edge singularity. For such singularities, anisotropicmeshes are usually designed to improve the effectiveness

of the finite element method (FEM). This is different from the isotropic graded meshes in two-dimensional

polygonal domains, where only corner (vertex) singularities need special numerical treatment. The develop-

ment of optimal FEMs for elliptic equations in polyhedral domains is a technically challenging task due to the

combination of different types of singularities and due to the complexity in the three-dimensional geometry.

Meanwhile, the error analysis for the numerical scheme often demands specific anisotropic regularity esti-

mates. Compared with estimates in isotropic Sobolev spaces, such anisotropic regularity results are limited

and less known, most of which are for pure Dirichlet problems. Consequently, the developments of effective

mesh algorithms are extensively centered around pure Dirichlet problems.

The existingmesh algorithms for polyhedral domains usually require restrictive geometric conditions on

themesh and on the domain. For example, the mesh in [2, 14] is based on themethod of dyadic partitioning.

These meshes are isotropic and optimal only for weaker singular solutions. The mesh in [1, 3, 4] is based on

a coordinate transformation from a quasi-uniformmesh. It is anisotropic along the edges and requires confin-

ing angle conditions for the simplex. The mesh in [7, 8] is also anisotropic and leads to optimal convergence

rate. The algorithm, however, requires extra steps for prism refinements tomaintain the angle condition in the

simplex. There are also tensor-product anisotropic meshes based on 2D graded meshes [5, 24] that are usu-

ally effective on a domainwith simple geometry. Recently, a new anisotropic FEMhas emerged [21, 22] based

on explicit recursive refinements. With fewer geometric requirements on the simplex and on the domain,

this algorithm leads to conforming triangulations, which however violates the maximum angle condition in

simplexes [6, 20]. Nevertheless, it was shown that, for the pureDirichlet problem, the solution has extra regu-

larity in the edge direction to compensate for the lack ofmesh shape regularity, and this algorithmgives rise to

optimal FEMs approximating the anisotropic singular solutions. Equations with mixed boundary conditions

can possess solutionswith a singular structure different from that in pure Dirichlet problems. Especially, near

an edge or a vertex that is surrounded by Neumann faces, the solution does not vanish and therefore does not

belong to the same Sobolev space as in the Dirichlet case. The rigorous theoretical and numerical justifica-

tion of anisotropic algorithms for problems with mixed boundary conditions, which occurs often in practical

computations, remains an open investigation.

In this paper, we extend the application of anisotropic algorithms to problems with mixed boundary

conditions by developing new finite element algorithms and new regularity results for equation (1.1). In par-

ticular, we study the singular expansion of the solution near singular points surrounded by Neumann faces.

It turns out that part of the singular expansion resembles the singularity in the Dirichlet problem and there-

fore belong to a similar weighted space. For the rest of the singular expansion, a series of estimates on its

fundamental properties shall reveal its directional regularities. We summarize our findings by establishing

new regularity results in Theorems 6.1 and 6.2, Lemma 6.3 and Corollary 6.5 in different parts of the domain.

Then we propose an optimal finite element algorithm (Algorithm 3.4) and validate it based on interpolation

error analysis in anisotropic weighted spaces.

The paper is organized as follows. In Section 2, we introduce necessary notation regarding the finite ele-

ment approximation of equation (1.1). We also define a domain decomposition according to the distance to

the singular points. In Section 3, we first review the anisotropic mesh developed in [21]. Then we propose

the anisotropic FEM for equation (1.1) with the mixed boundary condition. In Section 4, we study the regu-

larity of the equation in a dihedron, which shall lead to the local regularity estimates near an open edge. In

Section 5, we investigate the regularity of the equation in an infinite cone, which shall lead to the local regu-

larity estimates near a vertex of the domain. In Section 6, we present the regularity results for the solution in

the domain. In Section 7, we include detailed interpolation error analysis for the anisotropic finite element

algorithm in weighted spaces. These optimal interpolation error estimates in turn lead to the conclusion that

the proposed FEMs obtain the optimal convergence rate approximating the target problem. Numerical tests

are implemented in a polyhedral prism domain for different mixed boundary conditions, and the results are

reported in Section 8. These numerical results are in agreement with our theoretical prediction and hence

validate our method.
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Throughout the text below, we adopt the bold notation for vector fields. Let T be a triangle (resp. tetra-

hedron) with vertices a, b, c (resp. a, b, c, d). Then we denote T by its vertices: ∆

3abc for the triangle and
∆

4abcd for the tetrahedron, where the sup-index implies the number of vertices for T. We denote by ab the
open line segment with endpoints a and b. By a ∼ b (resp. a ≲ b) we mean that there exists a constant C > 0
independent of a and b such that C−1a ≤ b ≤ Ca (resp. a ≤ Cb). The generic constant C > 0 in our estimates

may be different at different occurrences. It will depend on the computational domain, but not on the func-

tions involved or the mesh level in the finite element algorithms. In addition, both of the terms are used

to represent the same directional derivative: ∂
1
= ∂x, ∂2 = ∂y, and ∂3 = ∂z. For a bounded domain D (or its

boundary), the usual norm and semi-norm of Hs(D) (s ≥ 0) are denoted by ‖ ⋅ ‖s,D and | ⋅ |s,D, respectively. For
s = 0, we will drop the index 0, and for D = Ω the index Ω. For two positive parameters s and ρ, we finally
introduce the norm ‖ ⋅ ‖s,D,ρ on Hs(D) (see [13, Definition AA.17] for instance) defined by

‖u‖s,D,ρ = (ρ2s‖u‖2D + |u|
2

s,D)
1

2
for all u ∈ Hs(D),

that is equivalent to the usual norm ‖ ⋅ ‖s,D (with constants of equivalence depending on ρ) if D has a Lipschitz
boundary.

2 Preliminaries

In this section, we introduce the notation and recall some existing results regarding the solution of (1.1).

2.1 The Finite Element Approximation

By a polyhedral domain Ω ⊂ ℝ3 we mean a bounded domain with a Lipschitz boundary ∂Ω made of plane

faces (i.e., its boundary is a finite union of polygons). Thus, the boundary of Ω is smooth, except at the vertex

points and along the edges. In a neighborhood of a vertex c,Ω coincideswith a three-dimensional cone,while

near an interior point of an edge e, Ω resembles a dihedral angle.

For a bounded domain O of ℝ3, let Hm(O), m ≥ 0, be the usual Sobolev space that consists of func-

tions defined in O whose kth derivatives are square-integrable for 0 ≤ k ≤ m (hence L2(O) := H0(O)). Let
Hm
loc

(Ω) := {v, v ∈ Hm(G) for any open subset Gwith compact closure Ḡ ⊂ Ω}. The trace operator from H1(Ω)
into H 1

2 (∂Ω) will be denoted by γ. We define

H1

Γ
Dir

(Ω) := {u ∈ H1(Ω), γu = 0 on Γ
Dir
}, (2.1)

which is clearly a closed subspace of H1(Ω).
Then, for f ∈ L2(Ω), the variational solution u ∈ H1

Γ
Dir

(Ω) of problem (1.1) is defined by

a(u, v) := ∫
Ω

∇u ⋅ ∇v dx = (f, v) := ∫
Ω

fv dx for all v ∈ H1

Γ
Dir

(Ω). (2.2)

Let Tn be a triangulation of Ω with tetrahedra. Let Sn ⊂ H1

Γ
Dir

(Ω) be the linear Lagrange finite element

space associated with Tn. Then the finite element solution un ∈ Sn for equation (1.1) is given by

a(un , vn) = (f, vn) for all vn ∈ Sn . (2.3)

Remark 2.1. By Poincaré’s inequality, the bilinear form a( ⋅ , ⋅ ) is both continuous and coercive on

V := H1

Γ
Dir

(Ω).

Then, by Céa’s lemma [9, 11], un is the best approximation from Sn in V, ‖u − un‖V ≤ infvn∈Sn‖u − vn‖V . It is
well known that the solution umaynot belong toH2(Ω)due to thepresenceof thenon-smoothpoints (vertices

and edges) on the boundary. On a standard quasi-uniform triangulation Tn, the limited regularity of u in the
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Sobolev space can result in a sub-optimal convergence rate for the finite element approximation. Namely,

‖u − un‖H1(Ω) ≤ Chs‖u‖Hs+1(Ω), where h is the mesh size in Tn and 0 < s < 1 depends on the geometry of the

domain.

For equation (1.1), there are two types of singularities in the solution that may affect the convergence of

numerical methods. The vertex singularity appears in the neighborhood of a vertex and concentrates at the

vertex. The edge singularity occurs in the neighborhood of an edge; it is however anisotropic in the sense

that the solution is smoother in the direction along the edge than toward the edge. Consequently, anisotropic

graded meshes are frequently applied to improve the convergence of the finite element solution.

2.2 The Domain and the Weighted Sobolev Space

We denote by E the finite set of open edges and by C the finite set of vertices of Ω. We also denote by Ec ⊂ E
the set of edges joining at c ∈ C and by Ce ⊂ C the set of endpoints of e ∈ E. We say an edge e ∈ E is a Dirichlet
(Neumann) edge if the Dirichlet (Neumann) boundary conditions are imposed on both adjacent faces of e. We

say e is a DN edge if the Dirichlet condition is imposed on one adjacent face of e and the Neumann condition

is on the other. Let ωe be the opening angle between the two adjacent faces of e. For each e ∈ E, define

νe =
{
{
{

π
ωe if e is a Dirichlet edge or a Neumann edge,

π
2ωe if e is a DN edge.

(2.4)

The edge e is called singular if νe < 1; otherwise, it is called regular. Denote by Γc the cone that coincides
with the domain Ω at c ∈ C. Let νc be the first positive eigenvalue of the Laplace–Beltrami operator on the

intersection of Γc with the unit sphere with boundary conditions inherited from equation (1.1). Then, if

−1
2

+ (νc + 1

4

)
1

2 < 1

2

, c is called singular; it is regular otherwise. For e ∈ E and c ∈ C, we set

λe =
{
{
{

νe if e is singular,
∞ otherwise;

λc =
{
{
{

−1
2

+ (νc + 1

4

)
1

2 if c is singular,
∞ otherwise.

To better describe the singular behavior of the solution near the non-smooth points, we further define

the distance functions. For any c ∈ C (resp. e ∈ E), we define Rc(x) (resp. re(x)) to be the distance from x ∈ Ω
to c (resp. to e). We further define θc,e(x) := re(x)

Rc(x) as the angular distance from x to the edge of e near c. Then,
for any vertex c ∈ C and edge e ∈ E, as in [10, 22], we define the following subsets of Ω:

{{{{{{
{{{{{{
{

Vc = {x ∈ Ω, Rc(x) < ε},
Vec = {x ∈ Vc , θc,e(x) < ε},
V0

c = {x ∈ Vc , θc,e(x) ≥ ε for all e ∈ Ec},
V0

e = {x ∈ Ω, Rc(x) ≥ ε, θc,e(x) < ε for all c ∈ Ce}

(2.5)

with ε > 0 small enough such that all these sets are disjoint for different vertices c and edges e. We further

define

V0 = Ω \ ((⋃
c∈C

Vc) ∪ (⋃
e∈E

V0

e)). (2.6)

It is clear that the subsets in (2.5) are neighborhoods of different non-smoothness points on the boundary. In

the neighborhoods V0

e and Vec , we choose a local Cartesian coordinate system in which the edge e ∈ E lies on

the z-axis. Let α⊥ = (α1, α2) consist of thefirst twoentries of themulti-index α = (α
1
, α

2
, α

3
) ∈ ℤ3≥0. Therefore,

in V0

e and Vec , ∂α⊥ = ∂α1x ∂α2y is a partial derivative in a direction perpendicular to the edge e. Meanwhile, we
define |α| := α

1
+ α

2
+ α

3
and |α⊥| := α1 + α2.
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We shall need the following weighted Sobolev space of Kondratiev’s type. Let O be a subset of ℝ3 such
that 0 belongs to its boundary. Then, for any β ∈ ℝ, k ∈ ℤ≥0, we define the space

Vkβ(O) = {v ∈ L
2

loc

(O) | rβ+|α|−kDαv ∈ L2(O) for all |α| ≤ k},

where r is the distance to 0. Define λE := maxe∈E(0, 1 − λe). We also assume the given data in equation (1.1)

to satisfy f ∈ Hσ(Ω) with

σ ∈
{
{
{

(λE, 1) if λE > 0,
[0, 1) if λE = 0.

(2.7)

3 Anisotropic Finite Element Algorithms

In this section, we propose new anisotropic FEMs approximating equation (1.1). In particular, we give

explicit values for the associated parameters in the algorithm, with which we shall prove the proposed

method achieves the optimal rate of convergence, even when the solution is singular.

3.1 Anisotropic Algorithms

Recall the vertex set C and the edge set E. Following the notation in [21], we first classify tetrahedra in the

triangulation of Ω.

Definition 3.1 (Tetrahedron Types). Let T be a tetrahedron. If an edge eT of T lies on e ∈ E, we call eT amarked
edge. Let cT be a vertex of T. If cT ∈ C, or if cT is an interior point of an edge e ∈ E and cT = e ∩ ̄T, we call cT
amarked vertex. Let T be a tetrahedral triangulation of Ω such that (I) each tetrahedron contains at most one

marked vertex and atmost onemarked edge, (II) if a tetrahedron contains both amarked vertex and amarked

edge, the marked vertex is an endpoint of the marked edge. Let S = E ∪ C. Then, for each tetrahedron T ∈ T,
according to its relation with S, there are five possible types.

(1) o-tetrahedron: ̄T ∩ S = 0.
(2) v-tetrahedron: ̄T ∩ S = c ∈ C.
(3) ve-tetrahedron: ̄T ∩ S is an interior point of an edge e ∈ E.
(4) e-tetrahedron: ̄T ∩ S is a marked edge, but contains no vertex in C.

(5) ev-tetrahedron: ̄T ∩ S contains a marked edge and a marked vertex.

Note that different types of tetrahedra in Definition 3.1 are associated to different sub-regions of Ω in (2.5)

and (2.6). In addition, we recall the following anisotropic mesh algorithm [21].

Algorithm 3.2 (Anisotropic Refinement). LetT be a triangulation ofΩ as inDefinition 3.1. To each c ∈ C (resp.
e ∈ E), we associate a grading parameter κc (resp. κe) ∈ (0, 1

2

]. Let T = ∆4x
0
x
1
x
2
x
3
∈ T be a tetrahedron

with vertices x
0
, x

1
, x

2
, x

3
such that x

0
is the marked vertex if T is a v-, ve- or ev-tetrahedron, and x0x1 is

the marked edge if T is an e- or ev-tetrahedron. Let κ be the collection of the parameters κc and κe for all
c ∈ C and e ∈ E. Then the refinement, denoted by κ(T), proceeds as follows. We first generate new nodes xkl,
0 ≤ k < l ≤ 3, on each edge xkxl of T, based on its type.
(I) o-tetrahedron: xkl = xk+xl

2

.

(II) v-tetrahedron: Suppose x
0
= c ∈ C. Define κ = κec := mine∈Ec (κc , κe). Then xkl =

xk+xl
2

for 1 ≤ k < l ≤ 3;
x
0l = (1−κ)x0 + κxl for 1 ≤ l ≤ 3.

(III) ve-tetrahedron: Suppose x0 is an interior point of e ∈ E. Let κ = κe. Then xkl = xk+xl
2

for 1 ≤ k < l ≤ 3;
x
0l = (1−κ)x0 + κxl for 1 ≤ l ≤ 3.

(IV) e-tetrahedron: Suppose x
0
x
1
⊆ e ∈ E. Then xkl = (1−κe)xk + κexl for 0 ≤ k ≤ 1 and 2 ≤ l ≤ 3; x01 = x0+x1

2

,

x
23
= x2+x3

2

.

(V) ev-tetrahedron: Suppose x
0
= c ∈ C and x

0
x
1
⊆ e ∈ Ec. Define κec := mine∈Ec (κc , κe). Then, for 2 ≤ l ≤ 3,

x
0l = (1−κec)x0 + κecxl and x1l = (1−κe)x1 + κexl; x01 = (1−κc)x0 + κcx1, x23 = x2+x3

2

.
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Figure 1: Refinements of a tetrahedron ∆4x0x1x2x3, top (left to right): o-tetrahedron, v- or ve-tetrahedron, e-tetrahedron;
bottom (left to right): two ev-tetrahedra with κec = κe and κec = κc.

Connecting these nodes xkl on all the faces of T, we obtain four sub-tetrahedra and one octahedron. The

octahedron then is cut into four tetrahedra using x
13
as the common vertex. Therefore, after one refinement,

we obtain eight sub-tetrahedra for each T ∈ T denoted by their vertices:

∆

4x
0
x
01
x
02
x
03
, ∆

4x
01
x
1
x
12
x
13
, ∆

4x
02
x
12
x
2
x
23
, ∆

4x
03
x
13
x
23
x
3
,

∆

4x
01
x
02
x
03
x
13
, ∆

4x
01
x
02
x
12
x
13
, ∆

4x
02
x
03
x
13
x
23
, ∆

4x
02
x
12
x
13
x
23
.

See Figure 1 for different types of decompositions. Given an initial mesh T
0
satisfying the condition in Def-

inition 3.1, the associated family of anisotropic meshes {Tn , n ≥ 0} is defined recursively, Tn = κ(Tn−1). See
Figure 2 for example.

Remark 3.3. The anisotropic mesh in Algorithm 3.2 is explicitly determined by the grading parameters κc
and κe that are associated to each vertex and edge. A smaller value of the parameter leads to a higher mesh

density near the vertex or the edge, while the value κc = κe = 1

2

corresponds to a quasi-uniform refinement.

In different regions of the domain, the resulting mesh may have different shape regularities. In V0

, the mesh

is isotropic and quasi-uniform. The local refinement for a v- or ve-tetrahedron in fact follows the same rule:

the mesh is isotropic and graded toward the vertex x
0
based on the grading parameter κ associated to the

vertex x
0
. InV0

e , the resultingmesh in general is anisotropic andgraded toward the edge e ∈ E. The refinement

in Vce depends on the parameters κc and κe, e ∈ Ec, which is also anisotropic, graded toward the edge e ∈ E
and the vertex c ∈ C. We also mention that the mesh in V0

e and in Vce does not satisfy the maximum angle

condition [6, 20] if κe < 1

2

, which can lead to a fair amount of difficulty in analysis. Nevertheless, it has been

shown in [21, 22] that these anisotropic meshes are effective in approximating three-dimensional singular

solutions provided the pure Dirichlet boundary condition is imposed. For mixed boundary conditions, the

singular solution no longer belongs to the same space as in [21, 22]. The algorithm design and analysis is

therefore more technically involved.

Now, we proceed to propose our finite element algorithm for equation (1.1) with f ∈ Hσ(Ω).

Algorithm 3.4 (Anisotropic Finite Element Algorithm). Let T
0
be the initial triangulation of Ω that satisfy the

condition in Definition 3.1. Then each parameter κc (resp. κe) ∈ (0, 1
2

] is uniquely determined by a new

parameter ac (resp. ae) ∈ (0, 1] such that

κc = 2−
1

ac and κe = 2−
1

ae . (3.1)
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Figure 2: Anisotropic triangulations after two consecutive refinements and mesh layers on an initial tetrahedron (left to right):
o-tetrahedron, v- or ve-tetrahedron (κ = 0.3), e-tetrahedron (κe = 0.3); ev-tetrahedron (κec = κc = 0.3, κe = 0.4).

We choose ac and ae such that ac ≤ ae for any e ∈ Ec and

1 − σ ≤ ae < λe if e is singular; ae = 1 if e is regular; (3.2)

ac < λc + 1

2

if c is singular; ac = 1 if c and all e ∈ Ec are regular. (3.3)

Let Tn be themesh obtained after n anisotropic refinements (Algorithm 3.2) from T
0
based on the parameters

κc and κe defined by ae and ac through (3.1)–(3.3). Then the proposed linear finite element approximation

un to equation (1.1) is defined by (2.3) on the mesh Tn.

Remark 3.5. For any c ∈ C, recall κec := mine∈Ec (κc , κe) in Algorithm 3.2. Based on the selections in (3.1)–

(3.3), it is clear that, for any c ∈ C, κec = κc. Note that ae has a lower bound 1 − σ in (3.2). Condition (2.7),

σ > λE ≥ maxe∈E(1 − λe), ensures the set given in (3.2) is not empty. For0 < ae < 1, it is clear that refinements

for an e- or ev-tetrahedron lead to anisotropic meshes toward the edge that do not preserve the maximum

angle condition. Namely, the maximum edge angle in the face of the tetrahedron approaches π as the level
of refinement n increases. This is a main difficulty that we shall overcome in the error analysis.

3.2 Mesh Layers

To better facilitate the error analysis for the proposed finite element algorithm (Algorithm 3.4) solving equa-

tion (1.1), for each initial tetrahedron T(0) ∈ T0, we introduce the mesh layers that are the collections of

tetrahedra in Tn.

We first define mesh layers for a v- or ve-tetrahedron in T
0
.

Definition 3.6 (Mesh Layers in v- and ve-Tetrahedra). Let T(0) = ∆4x0x1x2x3 ∈ T0 be either a v- or a ve-tetra-
hedron with x

0
∈ C or x

0
∈ e ∈ E. We use a local Cartesian coordinate system such that x

0
is the origin. For

1 ≤ i ≤ n, the ith refinement on T(0) produces a small tetrahedron with x
0
as a vertex and with one face,

denoted by Pv,i, parallel to the face ∆3x1x2x3 of T(0). See Figure 1 for example. Then, after n refinements, we

define the ith mesh layer Lv,i of T(0), 1 ≤ i < n, as the region in T(0) between Pv,i and Pv,i+1. We denote by Lv,0
the region in T(0) between ∆

3x
1
x
2
x
3
and Pv,1, and let Lv,n be the small tetrahedron with x

0
as a vertex that

is bounded by Pv,n and three faces of T(0). Since x0 is the only point for the special refinement, we drop the

sub-index in the grading parameter. Namely, for such T(0), we use κ = 2−
1

a to denote the grading parameter

near x
0
(κ = κc if x0 ∈ C, and κ = κe if x0 ∈ e ∈ E). See the second picture in Figure 2. Then, by Algorithm 3.2,

the dilation matrix

Bv,i :=(
κ−i 0 0

0 κ−i 0

0 0 κ−i
) (3.4)

maps Lv,i to Lv,0 for 0 ≤ i < n, and maps Lv,n to T(0). We define the initial triangulation of Lv,i, 0 ≤ i < n, to be
thefirst decompositionof Lv,i into tetrahedra. Thus, the initial triangulationof Lv,i consists of those tetrahedra
in Ti+1 that are contained in the layer Lv,i.

Now, we define mesh layers for an initial e-tetrahedron T(0).
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Definition 3.7 (Mesh Layers in e-Tetrahedra). Based on Algorithm 3.2, in each refinement, an e-tetrahedron
is cut by a parallelogram parallel to x

0
x
1
. For example, in the e-tetrahedron of Figure 1, the quadrilateral

with vertices x
02
, x

12
, x

13
, x

03
is the aforementioned parallelogram. We denote by Pe,i the parallelogram

produced in the ith refinement, 1 ≤ i ≤ n. For the mesh Tn, let the ith layer Le,i on T(0), 0 < i < n, be the
region bounded by Pe,i, Pe,i+1 and the faces of T(0). Define Le,0 to be the sub-region of T(0) away from e that
is separated by Pe,1. Define Le,n to be the sub-region of T(0) between Pe,n and e. See also the third picture in
Figure 2. As in Definition 3.6, the initial triangulation of the layer Le,i, 0 ≤ i < n, consists of the tetrahedra in
Ti+1 that are contained in Le,i. Therefore, re ∼ κie on Le,i, 0 ≤ i < n.

In addition, we have the following anisotropic mapping that transforms a tetrahedron in Le,i to a reference
element [21, Lemma 4.13].

Proposition 3.8. Let T(i+1) ∈ Ti+1 be a tetrahedron such that T(i+1) ⊂ Le,i ⊂ T(0), 0 ≤ i < n. Then T(i+1) is con-
tained either in an e-tetrahedron in Ti or in a ve-tetrahedron in Ti.

Case I: T(i+1) is contained in an e-tetrahedron T(i) ∈ Ti. Using a T(i)-based local coordinate system, there is
a transformation

Be,i =(
κ−ie 0 0

0 κ−ie 0

b
1
κ−ie b

2
κ−ie 2

i
) (3.5)

that maps T(i+1) to one of the four o-tetrahedra in T̂
1
(hence, we have finitely many reference elements for all

T(i+1)). Here, T̂1 is the triangulation on a reference tetrahedron ̂T that is obtained after one graded refinement
to the edge. For an e-tetrahedron in the last layer T(n) ⊂ Le,n ⊂ T(0), using a T(n)-based local coordinate system,
there exists a transformation Be,n of form (3.5) with i = n that maps T(n) to a reference tetrahedron ̂T.

Case II: T(i+1) is contained in a ve-tetrahedron T(i) ∈ Ti. Let T(k) ∈ Tk, 1 ≤ k ≤ i, be the ve-tetrahedron such
that T(i) ⊆ T(k) and T(k) is contained in an e-tetrahedron T(k−1) ∈ Tk−1. Using a T(k−1)-based local coordinate
system, there is a transformation

Bi,k =(
κ−i+1e 0 0

0 κ−i+1e 0

b
1
κ−i+1e b

2
κ−i+1e 2

k−1κk−ie

) (3.6)

that maps T(i+1) to one of the o-tetrahedra in T̂
2
(as in Case I, we again have finitely many reference elements

for all T(i+1)). Here, T̂2 is the triangulation on a reference tetrahedron ̂T that is obtained after two graded refine-
ments to the edge. For a ve-tetrahedron in the last layer T(n) ⊂ Le,n ⊂ T(0), let T(k) ∈ Tk be the ve-tetrahedron
such that T(n) ⊆ T(k) and T(k) is contained in an e-tetrahedron T(k−1) ∈ Tk−1. Using a T(k−1)-based local coor-
dinate system, there exists a transformation Bn,k of form (3.6) with i = n that maps T(n) to a ve-tetrahedron
in T̂

1
.
In both cases, |b

1
|, |b

2
| ≤ C

0
for C

0
> 0 depending on T(0) but not on i, n or k.

In addition, we define the mesh layers on an initial ev-tetrahedron T(0) ∈ T0.

Definition 3.9 (Mesh Layers in ev-Tetrahedra). For 1 ≤ i ≤ n, the ith refinement on T(0) produces a small

tetrahedron with x
0
as a vertex. We denote by Pev,i the face of this small tetrahedron whose closure does not

contain x
0
(see the last two pictures in Figure 1). Then, for the mesh Tn on T(0), we define the ith mesh layer

Lev,i, 1 ≤ i < n, as the region in T(0) between Pev,i and Pev,i+1. We define Lev,0 to be the region in T(0) between
∆

3x
1
x
2
x
3
and Pev,1 and let Lev,n ⊂ T(0) be the small tetrahedron with x

0
as a vertex that is generated in the

nth refinement.

Given the condition κec = κc in Algorithm 3.4, we see that the layer Lev,i and the layer Lv,i in Definition 3.6

are obtained from the same procedure. Therefore, use a local Cartesian coordinate system such that c is the
origin. For 0 ≤ i ≤ n, the mapping

Bev,i =(
κ−ic 0 0

0 κ−ic 0

0 0 κ−ic
) (3.7)
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is a bijection from Lev,i to L̂, where L̂ is the reference domain for Lev,i that satisfies L̂ := T(0) when i = n and
L̂ := Lev,0 when 0 ≤ i < n. Recall that one graded refinement using the same parameters κc and κe gives rise
to a triangulation on T(0), which we denote by T̂

1
. We further denote by L̂ the initial triangulation of Lev,0

that consists of the seven tetrahedra in T̂
1
.

4 Regularity Results in a Dihedron

In this section, we develop new regularity estimates for equation (1.1), especially in the region that is close

to the edges where different boundary conditions are imposed.

Let D = K ×ℝ be a dihedron, with K a two-dimensional cone of center 0 and opening angle ω. In this

domain, we consider u ∈ H1(D)with a support included in (K ∩ B(0, R)) ×ℝ for some R > 0 to be the solution
of

{{{
{{{
{

−∆u = f in D,
u = 0 on Γ

Dir
×ℝ,

∂nu = 0 on Γ
Neu
×ℝ,

(4.1)

where f ∈ Hσ(D) for some σ ∈ [0, 1) and Γ
Dir
∪ Γ

Neu
= ∂K such that Γ

Dir
(resp. Γ

Neu
) is either empty or a full

half-line. In that way, we consider either the pure Dirichlet, the pure Neumann or the mixed problem. In this

section, to simplify the exposition, we use (x
1
, x

2
, x

3
) (instead of (x, y, z)) to denote a point in D and suppose

the edge of D is on the x
3
-axis.

The behavior of this solution is well known in the case of the pure Dirichlet problem [13, 17] for data

in L2 but is less studied for smoother data and in the two other cases of boundary conditions. Our goal is to

show that this solution is decomposed into a regular part and a singular one with the appropriate behavior.

For that purpose, we perform a partial Fourier transform in the x
3
-variable that allows to reduce the study to

a Helmholtz equation in K.

4.1 Helmholtz Equation in a Cone

For all ξ ∈ ℝ, we consider the solution v ∈ H1(K) with a support included in K ∩ B(0, R) of

{{{
{{{
{

−∆v + ξ2v = g in K,
v = 0 on Γ

Dir
,

∂nv = 0 on Γ
Neu

,

(4.2)

where g ∈ Hσ(K) for some σ ∈ [0, 1) and show that v admits a decomposition into a regular part and a singular

one. Recall that the singularities of problem (4.2) are related to the singularities of the Laplace equation,

namely to the singularities of problem (4.2) with ξ = 0. Such singularities are in the form [13, 16]

Sk = rλkφk(θ)

with

λk =
kπ
ω

for all k ∈ ℕ∗ = ℕ \ {0} (4.3)

in the pure Dirichlet and Neumann case, while

λk =
(2k − 1)π

2ω
for all k ∈ ℕ∗ (4.4)

in the mixed case. Here, r is the distance to the vertex of K. For shortness, the smallest singular exponent λ
1

is denoted by λ. The function φk is given by φk(θ) = sin(λkθ) in the pure Dirichlet case and in themixed case,

while φk(θ) = cos(λkθ) in the pure Neumann case.

Now, we can prove the next result.
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Theorem 4.1. Let σ ∈ [0, 1) be such that σ ̸= λk − 1 for all k ∈ ℕ∗. Then, for all ξ ∈ ℝ, the solution v ∈ H1(K)
with a support included in K ∩ B(0, R) of (4.2) with g ∈ Hσ(D) can be split up into

v = v
reg
(ξ) + v

sing
(ξ), (4.5)

with v
reg
(ξ) ∈ H2+σ(K) and v

sing
(ξ) ∈ V2

δ (K) ∩ H
1(K) for any δ > 1 − λ satisfying the estimates¹

‖v
reg
(ξ)‖

2+σ,K,1+|ξ| ≲ ‖g‖σ,K,1+|ξ|, (4.6)

(1 + ξ2)‖r−σv
reg
(ξ)‖K ≲ ‖g‖σ,K,1+|ξ|, (4.7)

(1 + |ξ|δ+σ)‖v
sing
(ξ)‖V2

δ (K)
≲ ‖g‖σ,K,1+|ξ|, (4.8)

(1 + |ξ|)|v
sing
(ξ)|

1,K ≲ ‖g‖σ,K,1+|ξ|. (4.9)

Proof. We distinguish the case |ξ| > 1 to the case |ξ| ≤ 1.
(a) For |ξ| > 1, as in theproof of [13, Theorem16.9],weuse a scaling argument; namely, by setting ̂x = |ξ|x

and ̂v( ̂x) = v(x), we see that ̂v is solution of

{{{
{{{
{

−∆ ̂v + ̂v = ̂g in K,
̂v = 0 on Γ

Dir
,

∂n ̂v = 0 on Γ
Neu

,

(4.10)

where ̂g ∈ Hσ(K) is defined by ̂g( ̂x) = ξ−2g(x). Clearly, the weak formulation of this problem is

( ̂v, w)
1,K = ∫

K

̂gw dx for all w ∈ H1

Γ
Dir

(K),

where H1

Γ
Dir

(K) := {w ∈ H1(K) : w = 0 on Γ
Dir
} is a Hilbert space with its natural inner product

(u, w)
1,K = ∫

K

(∇u ⋅ ∇w + uw) dx for all u, w ∈ H1

Γ
Dir

(K).

As a direct consequence, the above problem has a unique solution ̂v ∈ H1

Γ
Dir

(K) with the continuous depen-

dence

‖ ̂v‖
1,K ≤ ‖ ̂g‖0,K . (4.11)

Now, using a localization argument, by [13, Theorem 23.7] (see also [13, Remark 23.8]) near the origin

and the standard shift theorem far from the origin, one deduces that ̂v admits the splitting

̂v = ̂v
reg
+ η( ̂r) ∑

k∈ℕ∗
:0<λk<1+σ

ck ̂rλkφk ,

where η ∈ D(ℝ2) is a smooth cut-off function equal to 1 in a neighborhood of the origin that, without loss of

generality, is assumed to have a support included in K ∩ B(0, R), ̂v
reg
∈ H2+σ(K) and ck ∈ ℝ with

‖ ̂v
reg
‖
2+σ,K + ∑

k∈ℕ∗
:0<λk<1+σ

|ck| ≲ ‖ ̂g‖σ,K + ‖ ̂v‖1,K .

Combined with (4.11), we find that

‖ ̂v
reg
‖
2+σ,K + ∑

k∈ℕ∗
:0<λk<1+σ

|ck| ≲ ‖ ̂g‖σ,K . (4.12)

By a transformation back, this yields (4.5) by setting v
reg
(x) = ̂v

reg
( ̂x) and²

v
sing
(ξ) = η(|ξ|r) ∑

k∈ℕ∗
:0<λk<1+σ

ck|ξ|λk rλkφk .

1 Here and below, the involved constants are independent of |ξ|.
2 Note that, for σ < λ − 1, v

sing
(ξ) = 0.
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Furthermore, using [13, Lemma AA.19], estimate (4.12) is equivalent to

‖v
reg
‖
2+σ,K,|ξ| + |ξ|1+σ ∑

k∈ℕ∗
:0<λk<1+σ

|ck| ≲ ‖g‖σ,K,|ξ|. (4.13)

This estimate directly leads to the first estimate (4.6) recalling that |ξ| > 1. To prove the second one,

we first notice that, the support of v
sing

being included in B(0, R|ξ| ) ⊂ B(0, R), vreg has a compact support

included in K ∩ B(0, R). Furthermore, using the estimate ‖v
reg
‖
2+σ,K∩B(0,R),|ξ| ≲ ‖g‖σ,K,|ξ| and an interpolation

inequality (see [16, Theorem 1.4.3.3]), we find that ‖v
reg
‖σ,K∩B(0,R) ≲ |ξ|−2‖g‖σ,K,|ξ|. Since [13, TheoremAA.7]

guarantees that Hσ(K ∩ B(0, R)) = Vσ
0

(K ∩ B(0, R)), we deduce that

‖r−σv
reg
‖
0,K = ‖r−σvreg‖0,K∩B(0,R) ≲ ‖vreg‖σ,K∩B(0,R) ≲ |ξ|−2‖g‖σ,K,|ξ|,

which is exactly (4.7).

To prove (4.8), it suffices to check that, for all k ∈ ℕ∗ such that 0 < λk < 1 + σ, one has

|ξ|δ+σ+λk |ck|‖η(|ξ|r)rλkφk‖V2

δ (K)
≲ ‖g‖σ,K,|ξ|,

which, in view of (4.13), holds as soon as

|ξ|δ+λk−1‖η(|ξ|r)rλkφk‖V2

δ (K)
≲ 1. (4.14)

Now, using polar coordinates, one can show that

‖η(|ξ|r)rλkφk‖2V2

δ (K)
≲
∞

∫
0

r2(δ+λk−2){|η(|ξ|r)|2 + ||ξ|rη(|ξ|r)|2 + ||ξ|2r2η(|ξ|r)|2}r dr,

and by the change of variable ̂r = |ξ|r, one finds

‖η(|ξ|r)rλkφk‖2V2

δ (K)
≲ |ξ|2(δ+λk−1)

∞

∫
0

̂r2(δ+λk−2){|η( ̂r)|2 + | ̂rη( ̂r)|2 + | ̂r2η( ̂r)|2} ̂r d ̂r.

The integral of this right-hand side being finite as soon as δ + λk − 1 > 0 (which holds if δ + λ − 1 > 0), we
have found that (4.14) is valid. The proof of (4.8) is fully similar and is left to the reader.

(b) For |ξ| ≤ 1, we first notice that
‖v‖

1,K ≲ |v|1,K (4.15)

because v has a compact support included into K ∩ B(0, R). Since the weak formulation of problem (4.2) is

∫
K

(∇v ⋅ ∇w + ξ2vw) dx = ∫
K

gw dx for all w ∈ H1

Γ
Dir

(K),

by taking w = v in this identity and using (4.15), we find

‖v‖2
1,K ≲ |v|

2

1,K ≤ ∫
K

(|∇v|2 + ξ2|v|2) dx = ∫
K

gv dx.

Consequently, by Cauchy–Schwarz’s inequality, we get

‖v‖
1,K ≲ ‖g‖0,K . (4.16)

Now, v can be seen as the solution of (compare with (4.10))

{{{
{{{
{

−∆v + v = ̃g in K,
v = 0 on Γ

Dir
,

∂nv = 0 on Γ
Neu

,
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where ̃g := g + v − ξ2v ∈ Hσ(K) that, owing to (4.16), satisfies (recalling that |ξ| ≤ 1) ‖ ̃g‖σ,K ≲ ‖g‖σ,K . As in the
previous point, we then get the decomposition

v = v
reg
+ η(r) ∑

k∈ℕ∗
:0<λk<1+σ

ckrλkφk ,

where v
reg
∈ H2+σ(K) and ck ∈ ℝ with

‖v
reg
‖
2+σ,K + ∑

k∈ℕ∗
:0<λk<1+σ

|ck| ≲ ‖ ̃g‖σ,K + ‖v‖1,K ≲ ‖ ̃g‖σ,K . (4.17)

This yields (4.5) with³

v
sing
(ξ) = η(r) ∑

k∈ℕ∗
:0<λk<1+σ

ckrλkφk ,

estimate (4.17) corresponding to (4.13) with |ξ| = 1. Estimate (4.6) is a direct consequence of (4.17), while

estimates (4.7)–(4.9) follow by using the previous arguments simply replacing |ξ| by 1.

4.2 Singular Decomposition in a Dihedron

Define the weighted spaceH2

γ,σ(D) in the dihedron D = K ×ℝ,

H2

γ,σ(D) := {v ∈ H2

loc

(D) | r−1−γv, r−γ∂⊥v, r−1∂3v ∈ L2(D), r1−γ∂2⊥v, ∂⊥∂3v, r−σ∂23v ∈ L
2(D)} (4.18)

with the norm

‖v‖2
H2

γ,σ(D)
:= ‖r−σ∂2

3

v‖2L2(D) + ∑
|α⊥|=1
‖∂α⊥∂

3
v‖2L2(D) + ‖r

−1∂
3
v‖2L2(D) + ∑

|α⊥|≤2
‖r|α⊥|−1−γ∂α⊥v‖2L2(D),

where ∂⊥ means the first-order derivatives in the x
1
, x

2
variables, ∂

3
= ∂x

3

, while α⊥ means that the third

component of the multi-index is zero.

Then we have the following regularity estimates for equation (4.1).

Theorem 4.2. Let σ ∈ [0, 1) be such that σ ̸= λk − 1 for all k ∈ ℕ∗. Recall λ := λ1. Suppose f ∈ Hσ(D). Then the
solution u ∈ H1(D) of (4.1) with a support included in (K ∩ B(0, R)) ×ℝ for some R > 0 can be split up into

u = u
reg
+ u

sing
, (4.19)

with u
reg
∈ H2+σ(D) such that r−σ∂2

3

u
reg
∈ L2(D) and u

sing
∈ H2

γ,σ(D) for any γ < λ satisfying the estimates

‖u
reg
‖
2+σ,D ≲ ‖f‖σ,D , (4.20)

‖r−σ∂j
3

u
reg
‖
0,D ≲ ‖f‖σ,D for all j = 0, 1, 2, (4.21)

‖u
sing
‖H2

γ,σ(D) ≲ ‖f‖σ,D . (4.22)

Proof. We perform a partial Fourier transform in x
3
. Namely, let v(ξ) = Fx

3
→ξu and g(ξ) = Fx

3
→ξ f . Then we

see that v is solution of (4.2). Applying Theorem 4.1 to v and performing inverse Fourier transform, we find

decomposition (4.19) with u
reg
= F−1x

3
→ξ vreg, using = F−1x

3
→ξ vsing. Estimate (4.20) (resp. (4.21)) follows from

(4.6) (resp. (4.7)) and [13, Proposition AA.20]. Similarly, using estimate (4.8), we get (since δ + σ > 0)

∑
|α⊥|≤2
‖r|α⊥|−2+δ∂α⊥u

sing
‖2L2(D) ≲ ‖f‖

2

σ,D for all δ > 1 − λ.

By setting γ = 1 − δ, this yields

∑
|α⊥|≤2
‖r|α⊥|−1−γ∂α⊥u

sing
‖2L2(D) ≲ ‖f‖

2

σ,D . (4.23)

3 As before, for σ < λ − 1, v
sing
(ξ) = 0.
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Again, applying (4.8) with δ = 2 − σ (resp. δ = 0) that is clearly larger than 1 − λ, we find

‖r−σ∂2
3

u
sing
‖2L2(D) ≲ ‖f‖

2

σ,D , (4.24)

‖r−1∂
3
u
sing
‖2L2(D) ≲ ‖f‖

2

σ,D . (4.25)

Finally, applying (4.9), we clearly obtain

‖∂
3
∂⊥using‖2L2(D) ≲ ‖f‖

2

σ,D . (4.26)

Estimates (4.23)–(4.26) show that (4.22) holds.

5 Regularity Results in a Dihedral Cone

In this section, we investigate the regularity of the solution of (1.1) in the region where the vertex and the

edges meet. Let Γ be a dihedral cone ofℝ3 of vertex c ∈ C (that can be identified with 0), in the sense that

Γ = {x ∈ ℝ3 : x
|x|
∈ G},

with G an open subset of the unit sphere S2 with a piecewise smooth boundary, each smooth part being

included in a great circle.

Let γc and γe be the parameters corresponding to a vertex c ∈ C and an edge e ∈ E of Γ, respectively. Let

γ be the collection of all the parameters γc and γe for Γ. Recall that Rc and re are the distances to the vertex c
and to the edge e, respectively. Then, given γc , γe ≥ 0 for all edges e of Γ, we define the weighted space

H2

γ,σ(Γ) := {v ∈ H2

loc

(Γ) | Rγe−γcc r−1−γee v, Rγe−γcc r−γee ∂⊥v, R
1−γc
c r−1e ∂3v ∈ L2(Vec),

Rγe−γcc r1−γee ∂2⊥v, R
1−γc
c ∂⊥∂3v, R

1+σ−γc
c r−σe ∂23v ∈ L

2(Vec);

r−1−γee v, r−γee ∂⊥v, r−1e ∂3v ∈ L2(V0

e),

r1−γee ∂2⊥v, ∂⊥∂3v, r−σe ∂23v ∈ L
2(V0

e);

R−1−γcc v, R−γcc ∂⊥v, R
−γc
c ∂

3
v ∈ L2(V0

c ),

R1−γcc ∂2⊥v, R
1−γc
c ∂⊥∂3v, R

1−γc
c ∂2

3

v ∈ L2(V0

c )}, (5.1)

with the norm

‖v‖2
H2

γ,σ(Γ)
:= ‖v‖2H2(V0) + ∑

e∈Ec

(‖R1−γcc θ−σc,e∂23v‖
2

L2(Ve
c)
+ ∑
|α⊥|=1
‖R1−γcc ∂α⊥∂

3
v‖2L2(Ve

c)

+ ‖R−γcc θ−1c,e∂3v‖2L2(Ve
c)
+ ∑
|α⊥|≤2
‖R|α⊥|−1−γcc θ|α⊥|−1−γec,e ∂α⊥v‖2L2(Ve

c)
)

+ ∑
c∈C,|α|≤2

‖R|α|−1−γcc ∂αv‖2L2(V0

c )

+ ∑
e∈E
(‖r−σe ∂23v‖

2

L2(V0

e )
+ ∑
|α⊥|=1
‖∂α⊥∂

3
v‖2L2(V0

e )

+ ‖r−1e ∂3v‖2L2(V0

e )
+ ∑
|α⊥|≤2
‖r|α⊥|−1−γee ∂α⊥v‖2L2(V0

e )
),

where ∂
3
is the derivative in the direction of e, ∂α⊥ = ∂α1

1

∂α2
2

for α⊥ = (α1, α2), and α = (α1, α2, α3).
In this domain, we consider u ∈ H1(Γ) with a support included in Γ ∩ B(0, R) for some R > 0 being the

solution of

{{{
{{{
{

−∆u = f in Γ,

u = 0 on Γ
Dir
,

∂nu = 0 on Γ
Neu

,

(5.2)

where f ∈ Hσ(C) for some σ ∈ [0, 1) and Γ
Dir
∪ Γ

Neu
= ∂Γ such that Γ

Dir
(resp. Γ

Neu
) is either empty or a finite

union of plane faces. Denote by γ
Dir
= Γ

Dir
∩ S2.
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Since u is only inH1

, by a solution of (5.2)wemean that u ∈ H1

Dir

(Γ) = {v ∈ H1(Γ) | u = 0 on Γ
Dir
} satisfies

∫
Γ

∇u ⋅ ∇v dx = ∫
Γ

fv dx for all v ∈ H1

Dir

(Γ). (5.3)

Note that the vertex singular exponent of problem (5.3) near c (see [3, 16]) is given by −1
2

±√νc,k + 1

4

, where

{νc,k}∞k=0 is the spectrum (enumerated in increasing order and repeated according to its multiplicity) of the

non-negative Laplace–Beltrami operator Lmixed

G on the intersection G between Γ and the unit sphere with

Dirichlet boundary condition on Γ
Dir
∩ ∂G and Neumann boundary condition on Γ

Neu
∩ ∂G. Here we are only

interested in exponents larger than −1
2

; hence, for all k ∈ ℕ := {0, 1, 2, . . . }, we set λc,k = −1
2

+√νc,k + 1

4

,

which is always non-negative. The associated singular function σc,k is given by

σc,k = R
λc,k
c φc,k , (5.4)

where φc,k is the eigenvector of Lmixed

G associated with νc,k, namely Lmixed

G φc,k = νc,kφc,k. Note that λc,0 = 0
if and only if Γ

Dir
∩ ∂G is empty, and in that case, σc,0 = 1; otherwise, λc,0 > 0.

Note that, in Γ, umayconsist of singularities from the edgeand singularities from thevertex. In afirst step,

we subtract from u its corner (vertex) singularities. Namely, as in [13, Lemma 17.4], we have the following

result.

Lemma 5.1. Let σ ∈ [0, 1) be such that λc,k ̸= σ + 1

2

for all k ∈ ℕ. Let u ∈ H1(Γ) with a support included in
Γ ∩ B(0, R) for some R > 0 be the solution of equation (5.3) with f ∈ Hσ(Γ). Then u admits the splitting

u = u
0
+ ∑
− 1
2

<λc,k<σ+ 1
2

ckσc,k , (5.5)

where u
0
∈ V1

−(1+σ)(Γ), ck ∈ ℂ and ∆u0 ∈ H
σ(Γ) = Vσ

0

(Γ).

Proof. By [13, Proposition AA.27], the Mellin transformM[u](λ) of u exists for all λ ∈ ℂwithℜλ = −1
2

and is

the variational solution of (∆ + λ(λ + 1))M[u](λ) =M[f](λ − 2). Since, by assumption on the lineℜλ = σ + 1

2

,

the operator ∆

 + λ(λ + 1) is invertible from H1

Dir

(G) = {v ∈ H1(G) | v = 0 on γ
Dir
} into its dual with

‖(∆ + λ(λ + 1))−1h‖
1,G,1+|λ| ≲ ‖h‖G ,

by the inverse Mellin transform on the lineℜλ = σ + 1

2

, we find the result (5.5) as in [13, Lemma 17.4].

We now split up u
0
into a regular part and a singular one that contains the edge contribution.

Lemma 5.2. Under the assumption of Lemma 5.1, u
0
admits the splitting u

0
= u

reg
+ u

sing
with u

reg
∈ V2+σ

0

(Γ),
r−σe ∂23ureg ∈ L2(Γ) and using ∈ H2

γ,σ(Γ) with γc = 1 + σ and γe < λe, where λe is the smallest exponent λ1 deter-
mined in either (4.3) or (4.4) according to the associated boundary condition with ωe instead of ω.

Proof. We start as in the proof of [13, Proposition 17.12] by setting

w(t, θ) = eηtu
0
(et , θ), h(t, θ) = e(η+2)t(∆u

0
)(et , θ)

with η = −(σ + 1

2

). These functions have the regularity w ∈ H1(ℝ × G), h ∈ Hσ(ℝ × G), and w is the weak

solution of (meaning that w satisfies the Dirichlet condition and Neumann condition in a weak sense)

(∆ + ∂2t + (1 − 2η)∂t + η(η − 1))w = h.

Since H1(ℝ × G) is embedded into Hσ(ℝ × G), this implies that

(∆ + ∂2t + (1 − 2η)∂t)w = h̃ = h − η(η − 1)w ∈ Hσ(ℝ × G).

Then, as in Section 4, we apply a partial Fourier transform in t to find thatW = Ft→ξ v is the weak solution of
(∆ − ξ2 + (1 − 2η)iξ))W = H with H = Ft→ξ h̃. This operator is mainly the same one as in problem (4.2), and

therefore we conclude that W admits a splitting similar to (4.5). Hence, taking the Fourier transform back,
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we find that (see Theorem 4.2) w = w
reg
+ w

sing
with w

reg
∈ H2+σ(ℝ × G) such that θ−σc,e∂

j
twreg
∈ L2(ℝ × G) for

j = 0, 1 and 2 (recalling that θc,e is the distance to the edges in ℝ × G and hence the angular distance in Γ),

and w
sing
∈ H2

γ,σ(ℝ × G) for any γe < λe for all e.
Coming back to u

0
, we find the result by setting (recalling that Rc is the distance to the vertex c)

u
reg
(Rc , θ) = R

−η
c wreg
(Rc , θ), u

sing
(r, θ) = R−ηc wsing

(Rc , θ).

Indeed, the regularity u
reg
∈ V2+σ

0

(Γ) follows fromw
reg
∈ H2+σ(ℝ × G) by using [13, TheoremAA.3], while the

property r−σe ∂23ureg ∈ L2(Γ) follows from the expression of ∂2
3

in spherical coordinates, an Euler’s change of

variables and the regularities of w
reg

mentioned above (noticing that r−σe ∼ R−σc θ−σc,e).
The regularity of u

sing
is proved similarly.

In summary, we have the following decomposition of the solution u of equation (5.3).

Corollary 5.3. Under the assumption of Lemma 5.1, u ∈ H1(Γ) with a support included in Γ ∩ B(0, R) for some
R > 0 being the solution of equation (5.3) with f ∈ Hσ(Γ) for some σ ∈ [0, 1) admits the splitting

u = u
reg
+ u

sing
+ ∑
− 1
2

<λc,k<σ+ 1
2

ckψσc,k

with u
reg
∈ V2+σ

0

(Γ), r−σe ∂23ureg ∈ L2(Γ) and using ∈ H2

γ,σ(Γ) with γc = 1 + σ and γe < λe, and ψ being a smooth
(and radial) cut-off function with a compact support and equal to 1 on the support of u.

Proof. Since u = ψu, the result follows from the two previous lemmas and Leibniz’s rule.

6 Regularity Analysis

In this section, we obtain anisotropic regularity results for equation (1.1) with f ∈ Hσ(Ω) for some σ ∈ [0, 1).
Our analysis is based on regularity estimates in different sub-regions (see (2.5)) of the domain near the

vertices and edges and uses a localization argument.

6.1 Regularity Estimates inV0
e

Let us start with an improved regularity of the solution along the edges. For that purpose, for any e ∈ E and

any point ξe ∈ e, we can fix a Cartesian system of coordinates xe = (xe,1, xe,2, xe,3) such that ξe corresponds
to (0, 0, 0). In such a situation, we can fix a cut-off function ηξe in the form ηξe (xe) = η0(xe,1, xe,2)η1(xe,3)
with η

0
, η

1
two cut-off functions such that η

0
(resp. η

1
) is equal to 1 near (0, 0) (resp. 0) with a sufficiently

small support such that the support of ηξe is included in V0

e . For all k ∈ ℕ∗, we further denote by λe,k the
associated singular exponents defined by (4.3) or (4.4) (according to the boundary conditions on its adjacent

faces) with ωe instead of ω.

Theorem 6.1. Recall the space H2

γ,σ from (4.18) and λe from Lemma 5.2. Let u ∈ H1

Γ
Dir

(Ω) be the solution of
(2.2)with f ∈ Hσ(Ω) for some σ ∈ [0, 1) such that σ ̸= λe,k − 1 for all k ∈ ℕ∗. Then, for any e ∈ E and any point
ξe ∈ e, we have

ηξeu = uξe ,reg + uξe ,sing (6.1)

with uξe ,reg ∈ H2+σ(V0

e) such that r−σe ∂23uξe ,reg ∈ L2(V0

e) and vξe ,sing ∈ H2

γe ,σ(V
0

e) for any γe ∈ [0, 1] and γe < λe
satisfying the estimates

‖uξe ,reg‖2+σ,V0

e
≲ ‖f‖σ,Ω ,

‖r−σe ∂
j
3

uξe ,reg‖V0

e
≲ ‖f‖σ,Ω for all j = 0, 1, 2,

‖uξe ,sing‖H2

γe ,σ(V
0

e ) ≲ ‖f‖σ,Ω . (6.2)
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Proof. For the sake of simplicity, we drop the indices e and ξe. Denote by D = K ×ℝ the dihedral cone that
coincides with Ω near ξ , where K is a two-dimensional cone of opening angle ω.

Now, ̃u := ηu is clearly a weak solution of

− ∆ ̃u = ̃f in D, (6.3)

where
̃f is given by

̃f = ηf − 2∇u ⋅ ∇η − u∆η ∈ L2(D). But the main point is that
̃f actually belongs to Hσ(D).

Indeed, the first term has trivially this property; the third term is even in H1(D), hence also in Hσ(D). Finally,
for the second term, we will show that it belongs to H1(D) as well. Indeed, we notice that

∇u ⋅ ∇η = η
1
∑
i=1,2

∂iη0∂iu + η0∂3η1∂3u.

Now, the first term belongs to H1(D) because η
1
∂iη0 is zero in a neighborhood of the edges and corners;

hence the H2

regularity of u inside the domain suffices to get the request regularity. On the other hand, for

the second term, we notice that the method of tangential differential quotients of Nirenberg (see for instance

[16, pp. 87–90]) can be applied to ψu in the x
3
direction, with a cut-off function similar to η such that ψ ≡ 1

on the support of η, and deduce that ∂
3
(ψu) ∈ H1(Ω). This obviously leads to η

0
∂
3
η
1
∂
3
u ∈ H1(D).

Once
̃f belongs to Hσ(D), we conclude by applying Theorem 4.2.

6.2 Regularity Estimates inVc

Now, we describe the extra regularity in a neighborhood of a vertex c ∈ C. For that purpose, we fix a cut-

off function χc that depends only on the Rc variable and such that χc ≡ 1 in a neighborhood of c and with

a support included in Vc (hence χc ≡ 0 in a neighborhood of the other vertices of Ω). We further denote by Γc
the infinite cone that coincides with Ω near c.

Then we have the following splitting of the solution near the vertex.

Theorem 6.2. Recall the spaceH2

γ,σ from (5.1) and λe from Lemma 5.2. Under the assumption of Lemma 5.1,
let u ∈ H1

Γ
Dir

(Ω) be the solution of (2.2) with f ∈ Hσ(Ω) for some σ ∈ [0, 1). Then, for any c ∈ C, χcu admits the
splitting

χcu = uc,reg + uc,sing + ∑
− 1
2

<λc,k<σ+ 1
2

ckψσc,k , (6.4)

with uc,reg ∈ V2+σ
0

(Γc), r−σe ∂23uc,reg ∈ L2(Vec) for all e ∈ E having c as an endpoint, and uc,sing ∈ H2

γ,σ(Γc) with
γc = 1 + σ and γe ∈ [0, 1] and γe < λe, and finallyψ being a smooth (and radial) cut-off functionwith a compact
support and equal to 1 on the support of χc.

Proof. We can apply Corollary 5.3 to χu (for shortness, we drop the index c) if we show that ∆(χu) ∈ Hσ(K).
As before, using Leibniz’s rule, ̃u := χu is clearly a weak solution of (6.3) with ̃f = χf − 2∇u ⋅ ∇χ − u∆χ, which
actually belongs to Hσ(K). The first and third term have trivially this property. Hence, only the second term

requires a careful inspection. Due to the choice of χ and using Cartesian coordinates centered at c, we have

∇u ⋅ ∇χ = χ
(R)
R ∑

i=1,2,3
xi∂iu.

First we may notice that χ is zero near c; hence the regularity of ∇u ⋅ ∇χ is related to the regularity of u far
from the corners. So, as u belongs to H2

in V
0
\ ∪c∈CVc, we get that

∇u ⋅ ∇χ ∈ H1(V
0
). (6.5)

Now, for a fixed edge e having c as an endpoint, we can use Cartesian coordinates such that the x
3
-axis

contains the edge e and can use splitting (6.1) of Theorem6.1. The regular part contributes to anH1

function,

so let us show that this is the same for the singular part ue,sing. Indeed, we have to show that

xi∂iue,sing ∈ H1(Vc) for all i = 1, 2, 3.
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For i = 3, this is a direct consequence of (6.2), while for i = 1 or 2, this is a consequence of (6.2) and of the
bound |xi| ≲ θc,e ≲ θ

1−γe
c,e . All together, (6.5) is valid, and the proof is complete.

The third term of splitting (6.4) of χcu is not inH2

γ,σ(Γ ∩ B(0, R)) because (see (5.4)) σc,k = R
λc,k
c φc,k and φc,k

is not necessarily equal to zero at the corners of G (intersection of Γ with the unit sphere), but it can be split

up into a regular part and a singular one in the spirit of Theorem 6.1 with ξ = 0. This allows us to show the

next result.

Lemma 6.3. Let λc,k > 0 be fixed such that λc,k < σ + 1

2

. Recall λe from Lemma5.2. Then vc,k := ψσc,k with σc,k
given by (5.4) can be split up into vc,k = v1 + v2 such that v1 satisfies

Rσcc θ
−σc,e
c,e ∂2

3

v
1
∈ L2(Vec),

Rσcc ∂α⊥∂3v1 ∈ L2(Vec) for all |α⊥| = 1,
Rσcc ∂α⊥v1 ∈ L2(Vec) for all |α⊥| = 2,

Rσc−2+|α|c ∂αv
1
∈ L2(Vce) for all |α| ≤ 1,

and v
2
satisfies

Rσcc θ
−σc,e
c,e ∂2

3

v
2
∈ L2(Vec),

Rσcc ∂α⊥∂3v2 ∈ L2(Vec) for all |α⊥| = 1,

Rσcc θ
̃σc,e
c,e ∂α⊥v2 ∈ L2(Vec) for all |α⊥| = 2,

Rσc−1c θ ̃σc,e−1c,e ∂α⊥v
2
∈ L2(Vec) for all |α⊥| = 1,

Rσc−1c θ−1c,e∂3v2 ∈ L2(Vec),

Rσc−2c θ ̃σc,e−2c,e v
2
∈ L2(Vec),

for any σc,e < 1, any ̃σc,e > 1 − λe and any σc > 1

2

− λc, where λc is the smallest positive λc,k such that
−1
2

< λc,k < σ + 1

2

and θc,e(x) := re(x)
Rc(x) is the angular distance.

Proof. Theproof is based on simple calculations expressing the Cartesianderivatives in spherical coordinates

(Rc , θc,e , φc,e) (where θc,e is the angular distance to the edge e). We use the splitting

φc,k = κ(0)c,eχc,e(θc,e) + κc,eθ
λc,e
c,e φc,k,e(φc,e) + φc,k,R ,

where κ(0)c,e , κc,e ∈ ℂ, χc,e is a cut-off function equal to1near θc,e = 0,φc,k,e is the singular function associated
with the corner singular exponent λc,e and φc,k,R is the regular part of φc,k that either belongs to H2(G) or
has to be split up into a singular part (similar to the second term of the above right-hands side) and a regular

part in H2(G). In this situation,
v
2
= κc,eψR

λc,k
c θλc,ec,e φc,k,e(φc,e),

while v
1
= vc,k − v2.

Remark 6.4. The function vc,k = ψσc,k = ψRλc,kφc,k that characterizes the vertex singularity in (6.4) satisfies
the following. (1) In the case λc,k = 0, σc,k = constant because the eigenvector φc,k of the Laplace–Beltrami

operator corresponding to the zero eigenvalue is a constant. (2) In the case λc,k > 0, according to Lemma 6.3,

the function vc,k admits a splitting into two functions v
1
and v

2
. In particular, let

σc,e ∈ (0, 1), σc = 1 − ac , ̃σc,e = 1 − ae , (6.6)

where ac and ae areparameters defined for the anisotropicmesh (Algorithm3.4). Given the conditions in (3.2)

and (3.3), we conclude that the selections in (6.6) satisfy the conditions in Lemma 6.3. Namely, σc > 1

2

− λc
and ̃σc,e > 1 − λe. Recall the weighted space H2

γ from (5.1). It is clear that the function v
2
∈ H2

γ,σ(V
e
c) with

γe = ae, γc = ac and σ = σc,e.

Recall that V0

c is part of the neighborhood of c ∈ C that excludes the edges. Based on Theorem 6.2 and

Lemma 6.3, we further obtain the regularity estimate in V0

c .
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Corollary 6.5. Under the assumption of Lemma 5.1, let u ∈ H1

Γ
Dir

(Ω) be the solution of (2.2) with f ∈ Hσ(Ω)
for some σ ∈ [0, 1). Let c ∈ C be a vertex, and let λc be the smallest positive λc,k. If λc < σ + 1

2

, in V0

c , u
admits the decomposition u = uc,reg + uc,sing, where uc,reg ∈ H2(V0

c ) and uc,sing ∈ V2

σc (V
0

c ) for any σc > 1

2

− λc.
If λc ≥ σ + 1

2

, we have u ∈ H2(V0

c ).

Proof. Note that the angular distance θc,e is bounded below from 0 in V0

c . Taking this into account in (6.4)

and in the regularity estimates (Theorem 6.2 and Lemma 6.3), we can derive the result in this corollary by

straightforward calculations.

7 Interpolation Error Analysis

In this section, we carry out the interpolation error analysis for the proposed anisotropic finite element

scheme (Algorithm 3.4) for equation (1.1) with f ∈ Hσ(Ω) given in (2.7). Different from the error analysis for

the pure Dirichlet problem [22], the numerical analysis for the problem with the mixed boundary condition,

especially in the case that Neumann boundary conditions are imposed in the adjacent faces of non-smooth

points, requires new analytical tools and more involved, since the underlying solution has quite different

singular behaviors near vertices and edges as elaborated in previous sections. We shall conduct the analysis

on initial tetrahedra according to their types (Definition 3.1).

We first have the estimate for an o-tetrahedron in the initial mesh.

Lemma 7.1. Let T(0) ∈ T0 be an o-tetrahedron. For u ∈ H2(T(0)), let Iu ∈ Sn be its nodal interpolation on Tn.
Then we have |u − Iu|H1(T(0)) ≤ Ch‖u‖H2(T(0)), where h = 2−n and C is independent of n and u.

Proof. Based onAlgorithms3.2 and3.4, the restriction ofTn on T(0) is a quasi-uniformmeshwith sizeO(2−n).
By the standard interpolation error estimate, we obtain |u − Iu|H1(T(0)) ≤ C ⋅ 2−n‖u‖H2(T(0)) ≤ Ch‖u‖H2(T(0)).

7.1 Analysis on Initial v- and ve-Tetrahedra

For an initial v- or ve-tetrahedron T(0) = ∆4x0x1x2x3 in T
0
, recall the mesh layers Lv,i, 0 ≤ i ≤ n in Defini-

tion 3.6. Based on the refinement, on each Lv,i, the tetrahedra in Tn are isotropic with mesh size O(κi ⋅ 2i−n).
In T(0), let ρ be the distance to x0. Therefore,

ρ ∼ κi on Lv,i , 0 ≤ i < n. (7.1)

Namely, if T(0) is a v-tetrahedron, ρ ∼ Rc for c = x0 ∈ C, and if T(0) is a ve-tetrahedron, ρ ∼ re, where e ∈ E is

the edge containing x
0
.

Recall from Theorem 6.1 that the solution admits the following decomposition on an initial ve-tetra-
hedron T(0):

u = uξe ,reg + uξe ,sing, (7.2)

where uξe ,reg ∈ H2(T(0)) and uξe ,sing ∈ Hγe ,σ(T(0)) for γe ∈ [0, 1] and γe < λe. Meanwhile, by Corollary 6.5, the
solution admits the following decompositions on an initial v-tetrahedron T(0):

u = uc,reg + uc,sing, (7.3)

where uc,reg ∈ H2(T(0)) and uc,sing ∈ V2

σc (T(0)) for any σc >
1

2

− λc, where λc < σ + 1

2

; in the case λc ≥ σ + 1

2

,

we have u = uc,reg.
Then we have the interpolation error estimate in the layer Lv,i.

Lemma 7.2. For a continuous function v, let Iv be its nodal interpolation on Tn. Let T(0) ∈ T0 be either a v- or
a ve-tetrahedron. For v ∈ H2(T(0)), we have

|v − Iv|H1(Lv,i) ≤ Ch‖v‖H2(Lv,i), 0 ≤ i ≤ n.



H. Li and S. Nicaise, A Priori Analysis of an Anisotropic Finite Element Method | 163

If T(0) ∈ T0 is a v-tetrahedron and v ∈ V2

σc (T(0)), where σc satisfies the condition in Corollary 6.5, then

|v − Iv|H1(Lv,i) ≤ Ch‖v‖V2

1−ac (Lv,i)
, 0 ≤ i < n.

If T(0) ∈ T0 is a ve-tetrahedron and v ∈ H2

γe ,σ(T(0)), where γe satisfies the condition in Theorem 6.1, then

|v − Iv|H1(Lv,i) ≤ Ch‖v‖H2

ae ,σ(Lv,i), 0 ≤ i < n.

In all these estimates, h = 2−n, C is independent of i and v, and ac and ae are the mesh grading parameters in
(3.2) and (3.3).

Proof. For (x, y, z) ∈ Lv,i, let ( ̂x, ̂y, ̂z) ∈ L̂ be its image under the dilation Bv,i in (3.4), where L̂ = Lv,0 when
i < n and L̂ = T(0) when i = n. For a function v on Lv,i, we define ̂v on L̂ by ̂v( ̂x, ̂y, ̂z) := v(x, y, z). As part of Tn,
the triangulation on Lv,i is mapped byBv,i to a triangulation on L̂withmesh size O(2i−n). Then, by the scaling
argument and the interpolation error estimate on L̂, we have

|v − Iv|2H1(Lv,i) = κ
i| ̂v − Îv|2H1(L̂) ≤ Cκ

i ⋅ 22(i−n)| ̂v|2H2(L̂) ≤ C ⋅ 2
2(i−n)κ2i|v|2H2(Lv,i). (7.4)

Thus, for v ∈ H2(T(0)), by (7.4) and κ ≤ 1

2

, for 0 ≤ i ≤ n, we have

|v − Iv|H1(Lv,i) ≤ Ch|v|H2(Lv,i),

which proves the first estimate of the lemma.

If T(0) is a v-tetrahedron, for i < n, we have Rc ∼ κi = κic on Lv,i. Note that if v ∈ V2

σc (T(0)) for any
σc > 1

2

− λc (a condition in (7.3)), according to condition (3.3), it is clear that v ∈ V2

1−ac (T(0)). Therefore,
by (7.4) and (3.1), we have

|v − Iv|2H1(Lv,i) ≤ C2
2(i−n)κ2i|v|2H2(Lv,i) ≤ C2

2(i−n)κ2iacc ∑
|α|=2
‖R1−acc ∂αv‖2L2(Lv,i) ≤ C ⋅ 2

−2n‖v‖2V2

1−ac (Li,v)
.

This proves the second estimate of the lemma.

If T(0) is a ve-tetrahedron, for i < n, we have re ∼ κi = κie on Lv,i. Note that if v ∈ H2

γe ,σ(T(0)) for any γe < λe
(a condition in (7.2)), according to the condition (3.2), it is clear that v ∈ H2

ae ,σ(T(0)). Thus, by (7.4), (3.1) and
(3.2), we have

|v − Iv|2H1(Lv,i) ≤ C ⋅ 2
2(i−n)κ2i|v|2H2(Lv,i) ≤ C ⋅ 2

2(i−n)κ2iaee ∑
|α|=2
‖r1−aee ∂αv‖2L2(Lv,i)

≤ C ⋅ 2−2n( ∑
|α⊥|=2
‖r1−aee ∂α⊥v‖2L2(Lv,i) + ∑

|α⊥|=1
‖∂α⊥∂zv‖2L2(Lv,i) + ‖r

−σ
e ∂2z v‖2L2(Lv,i))

≤ C ⋅ 2−2n‖v‖2
H2

ae ,σ(Li,v)
.

This proves the third estimate and concludes the proof of this lemma.

Then we give the error estimate on the whole initial tetrahedron T(0).

Corollary 7.3. Let T(0) ∈ T0 be either a v- or a ve-tetrahedron. For the solution u of equation (1.1) with f given
in (2.7), let Iu be its nodal interpolation on Tn. Then we have |u − Iu|H1(T(0)) ≤ Ch, where h = 2−n and C is
independent of n.

Proof. We first show the interpolation error estimate on the last layer Lv,n.
For (x, y, z) ∈ Lv,n, let ( ̂x, ̂y, ̂z) ∈ T(0) be its image under the dilation Bv,n. For a function v on Lv,n, we

define ̂v on T(0) by ̂v( ̂x, ̂y, ̂z) := v(x, y, z). Now, let χ be a smooth cut-off function on T(0) such that χ = 0 in

a neighborhood of x
0
and = 1 at every other node of T(0). Recall the distance function ρ from (7.1). Thus,

ρ( ̂x, ̂y, ̂z) = κ−nρ(x, y, z). Since χ ̂v = 0 in the neighborhood of x
0
, we have

|χ ̂v|2H2(T(0)) ≤ C ∑
|α|≤2
‖ρ|α|−1∂α ̂v‖2L2(T(0)). (7.5)
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Define ŵ := ̂v − χ ̂v, and note that ̂I(χ ̂v) = ̂I ̂v, where ̂I ̂v is the interpolation on T(0). We have

| ̂v − ̂I ̂v|H1(T(0)) = |ŵ + χ ̂v − ̂I ̂v|H1(T(0)) ≤ |ŵ|H1(T(0)) + |χ ̂v − ̂I ̂v|H1(T(0))

= |ŵ|H1(T(0)) + |χ ̂v − ̂I(χ ̂v)|H1(T(0)) ≤ C(‖ ̂v‖H1(T(0)) + |χ ̂v|H2(T(0))), (7.6)

where C depends on T(0). Then, using (7.6), (7.5), the scaling argument and κ−n ≲ ρ−1 in Lv,n, we have

|v − Iv|2H1(Lv,n) = κ
n| ̂v − ̂I ̂v|2H1(T(0)) ≤ Cκ

n(‖ ̂v‖2H1(T(0)) + ∑
|α|≤2
‖ρ|α|−1∂α ̂v‖2L2(T(0)))

≤ C ∑
|α|≤2
‖ρ|α|−1∂αv‖2L2(Lv,n) ≤ Cκ

2na ∑
|α|≤2
‖ρ|α|−1−a∂αv‖2L2(Lv,n).

When T(0) is a v-tetrahedron, by ρ ∼ Rc, the definition of the weighted space, (3.1) and (3.3), we have

|v − Iv|2H1(Lv,n) ≤ C ⋅ 2
−2n ∑
|α|≤2
‖R|α|−1−acc ∂αv‖2L2(Lv,n) ≤ Ch

2‖v‖2V2

1−ac (Lv,n)
. (7.7)

When T(0) is a ve-tetrahedron, by ρ ∼ re, the definition of the weighted space, (3.1) and (3.2), one obtains

|v − Iv|2H1(Lv,n) ≤ C ⋅ 2
−2n ∑
|α|≤2
‖r|α|−1−aee ∂αv‖2L2(Lv,n)

≤ Ch2(‖r−1e ∂zv‖2L2(Lv,n) + ‖r
−σ
e ∂2z v‖2L2(Lv,n)

+ ∑
|α⊥|=1
‖∂α⊥∂zv‖2L2(Lv,n) + ∑

|α⊥|≤2
‖r|α⊥|−1−aee ∂α⊥v‖2L2(Lv,n))

≤ Ch2‖v‖2
H2

ae ,σ(Lv,n)
. (7.8)

For a v-tetrahedron T(0), recall decomposition (7.3), u = uc,reg + uc,sing. In Lemma 7.2, replace v by uc,reg
in the first estimate, replace v by uc,sing in the second estimate, and replace v by uc,sing in (7.7). Summing

up these estimates over all the layers, by the regularity estimates in Corollary 6.5 and by ac ∈ (0, 1] and
ac < λc + 1

2

, we therefore have

|u − Iu|H1(T(0)) ≤ |uc,reg − Iuc,reg|H1(T(0)) + |uc,sing − Iuc,sing|H1(T(0))

≤ Ch(‖uc,reg‖H2(T(0)) + ‖uc,sing‖V2

1−ac (T(0))
) ≤ Ch.

Similarly, for a ve-tetrahedron T(0), recall decomposition (7.2), u = uξe ,reg + uξe ,sing. In Lemma 7.2,

replace v by uξe ,reg in the first estimate, replace v by uξe ,sing in the third estimate, and replace v by uξe ,sing
in (7.8). Summing up these estimates over all the layers, by the regularity estimates in Theorem 6.1 and by

ae ∈ (0, 1] and 1 − σ ≤ ae < λe, we therefore have

|u − Iu|H1(T(0)) ≤ |uξe ,reg − Iuξe ,reg|H1(T(0)) + |uξe ,sing − Iuξe ,sing|H1(T(0))

≤ Ch(‖uξe ,reg‖H2(T(0)) + ‖uξe ,sing‖H2

ae ,σ(T(0))) ≤ Ch.

Hence, the proof is completed.

7.2 Analysis on Initial e-Tetrahedra

In the neighborhood of an edge e, according to Theorem 6.1, we write u = u
reg
+ u

sing
. Recall the nodal

interpolation Iu ∈ Sn on Tn. Then the interpolation error on an initial e-tetrahedron T(0) ∈ T0 satisfies

|u − Iu|H1(T(0)) ≤ |ureg − Iureg|H1(T(0)) + |using − Iusing|H1(T(0)). (7.9)

Lemma 7.4. Let T(0) ∈ T0 be an e-tetrahedron, and let Le,i be the ith mesh layer (Definition 3.7). Then, for σ
given in (2.7) and ae given in (3.2) (namely, ae ∈ (0, 1] and 1 − σ ≤ ae < λe), we have

|u
reg
− Iu

reg
|H1(Le,i) ≤ Ch(‖ureg‖H2(Le,i) + ‖r

−σ
e ∂2zureg‖L2(Le,i)), 0 ≤ i ≤ n,

|u
sing
− Iu

sing
|H1(Le,i) ≤ Ch‖using‖H2

ae ,σ(Le,i), 0 ≤ i < n,

where n is the number of refinements, h = 2−n, and C depends on T(0), but not on i.
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Proof. Recall that the layer Le,n ⊂ T(0) is the union of tetrahedra in Tn that touch the edge e; if i < n, Le,i is
formed in the (i + 1)th refinement and is the union of tetrahedra in Ti+1 between Pe,i and Pe,i+1. Therefore, it
suffices to study the interpolation error estimate on each tetrahedron T(n) ⊂ Le,n and on Ti+1 ∋ T(i+1) ⊂ Le,i if
i < n. Let T(i) ∈ Ti be the tetrahedron containing T(i+1) if i < n, and let T(i) = T(n) if i = n. Then T(i) is either an
e-tetrahedron or a ve-tetrahedron. To simplify the notation, in what follows, we denote by v a function and

by Iv its nodal interpolation on Tn. The analysis is based on T(i)’s type.

Case I: T(i) is an e-tetrahedron. Let (x, y, z) ∈ T(i+1), and let ( ̂x, ̂y, ̂z) ∈ ̂T(i+1) := Be,iT(i+1) as defined in Propo-
sition 3.8, where

̂T(i+1) is the reference tetrahedron. Let ̂v( ̂x, ̂y, ̂z) := v(x, y, z). Then, by the mapping in (3.5),

we have

{{{
{{{
{

dx dy dz = 2−iκ2ie d ̂x d ̂y d ̂z;

∂xv = (κ−ie ∂ ̂x + b1κ−ie ∂ ̂z) ̂v, ∂yv = (κ−ie ∂ ̂y + b2κ−ie ∂ ̂z) ̂v, ∂zv = 2i∂ ̂z ̂v;
∂ ̂x ̂v = (κie∂x − b1 ⋅ 2−i∂z)v, ∂ ̂y ̂v = (κie∂y − b2 ⋅ 2−i∂z)v, ∂ ̂z ̂v = 2−i∂zv.

(7.10)

Therefore, by (7.10) and the standard interpolation estimate on
̂T(i+1), we have

‖∂x(v − Iv)‖2L2(T(i+1)) ≤ C ⋅ 2
−i(‖∂ ̂x( ̂v − Îv)‖2L2( ̂T(i+1))

+ ‖∂ ̂z( ̂v − Îv)‖2L2( ̂T(i+1)))

≤ C ⋅ 2−i22(i−n)| ̂v|2H2( ̂T(i+1))

≤ C ⋅ 22(i−n) ∑
|α⊥|+α3=2

2

−2iα
3κ2i(|α⊥|−1)e ‖∂α⊥∂α3z v‖2L2(T(i+1)). (7.11)

A similar calculation for the derivative with respect to y gives

‖∂y(v − Iv)‖2L2(T(i+1)) ≤ C ⋅ 2
2(i−n) ∑
|α⊥|+α3=2

2

−2iα
3κ2i(|α⊥|−1)e ‖∂α⊥∂α3z v‖2L2(T(i+1)). (7.12)

In the z-direction, by (7.10) and κe ≤ 1

2

, following the calculation in (7.11), we have

‖∂z(v − Iv)‖2L2(T(i+1)) ≤ C ⋅ 2
iκ2ie ‖∂ ̂z( ̂v − Îv)‖2L2( ̂T(i+1))

≤ C ⋅ 2−i(‖∂ ̂x( ̂v − Îv)‖2L2( ̂T(i+1))
+ ‖∂ ̂z( ̂v − Îv)‖2L2( ̂T(i+1)))

≤ C ⋅ 22(i−n) ∑
|α⊥|+α3=2

2

−2iα
3κ2i(|α⊥|−1)e ‖∂α⊥∂α3z v‖2L2(T(i+1)). (7.13)

Thus, by (7.11)–(7.13), the estimate of the term

E := 22(i−n) ∑
|α⊥|+α3=2

2

−2iα
3κ2i(|α⊥|−1)e ‖∂α⊥∂α3z v‖2L2(T(i+1))

is important for the error analysis. By (3.1) and (3.2), we first have

E ≤ C ⋅ 2−2n(2−2iκ−2ie ‖∂2z v‖2L2(T(i+1)) + ∑
|α⊥|=1
‖∂α⊥∂zv‖2L2(T(i+1)) + 2

2iκ2ie ∑
|α⊥|=2
‖∂α⊥v‖2L2(T(i+1)))

≤ Ch2(κ2i(ae−1)e ‖∂2z v‖2L2(T(i+1)) + ∑
|α⊥|=1
‖∂α⊥∂zv‖2L2(T(i+1)) + κ

2i(1−ae)
e ∑

|α⊥|=2
‖∂α⊥v‖2L2(T(i+1))). (7.14)

Recall κe = 2−
1

ae , ae ≤ 1, re ∼ κie on T(i+1) if i < n, and re < Cκne on T(n). By 1 − σ ≤ ae < λe, for i < n, we have

E ≤ Ch2(‖rae−1e ∂2z v‖2L2(T(i+1)) + ∑
|α⊥|=1
‖∂α⊥∂zv‖2L2(T(i+1)) + ∑

|α⊥|=2
‖r1−aee ∂α⊥v‖2L2(T(i+1)))

≤ Ch2(‖r−σe ∂2z v‖2L2(T(i+1)) + ∑
|α⊥|=1
‖∂α⊥∂zv‖2L2(T(i+1)) + ∑

|α⊥|=2
‖r1−aee ∂α⊥v‖2L2(T(i+1))). (7.15)

For i = n, we have

E ≤ Ch2(‖rae−1e ∂2z v‖2L2(T(n)) + ∑
|α⊥|=1
‖∂α⊥∂zv‖2L2(T(n)) + κ

2i(1−ae)
e ∑

|α⊥|=2
‖∂α⊥v‖2L2(T(n)))

≤ Ch2(‖r−σe ∂2z v‖2L2(T(n)) + ∑
|α⊥|=1
‖∂α⊥∂zv‖2L2(T(n)) + ∑

|α⊥|=2
‖∂α⊥v‖2L2(T(n))). (7.16)
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Thus, for v = u
reg
, by (7.11)–(7.16), for i ≤ n, we have

|u
reg
− Iu

reg
|H1(T(i+1)) ≤ Ch(‖ureg‖H2(T(i+1)) + ‖r

−σ
e ∂2zureg‖L2(T(i+1))). (7.17)

For v = u
sing

, by (7.11)–(7.15), for i < n, we have

|u
sing
− Iu

sing
|H1(T(i+1)) ≤ Ch‖using‖H2

ae ,σ(T(i+1)). (7.18)

Hence, we have completed the proof of Case I. Note that, for i = n, the scaling arguments in (7.11)–(7.13)

hold for u
reg

since û
reg
∈ H2

on the reference element. They hold for u
sing

only when i < n because u
sing
∉ H2

on the last layer of the mesh. This is why estimates (7.17) and (7.18) have different forms.

Case II: T(i) is a ve-tetrahedron. Let T(k) ∈ Tk, 1 ≤ k ≤ i, be the ve-tetrahedron such that T(i) ⊆ T(k) and T(k) is
contained in an e-tetrahedron T(k−1) ∈ Tk−1. For (x, y, z) ∈ T(i+1), let ( ̂x, ̂y, ̂z) ∈ ̂T(i+1) = Bi,kT(i+1) (see Propo-
sition 3.8), where

̂T(i+1) is the reference element. Let ̂v( ̂x, ̂y, ̂z) := v(x, y, z). We have

{{{
{{{
{

dx dy dz = 21−kκ3i−k−2e d ̂x d ̂y d ̂z;

∂ ̂x ̂v = (κi−1e ∂x − b1 ⋅ 21−kκi−ke ∂z)v, ∂ ̂y ̂v = (κi−1e ∂y − b2 ⋅ 21−kκi−ke ∂z)v, ∂ ̂z ̂v = 21−kκi−ke ∂zv;
∂xv = (κ1−ie ∂ ̂x + b1κ1−ie ∂ ̂z) ̂v, ∂yv = (κ1−ie ∂ ̂y + b2κ1−ie ∂ ̂z) ̂v, ∂zv = 2k−1κk−ie ∂ ̂z ̂v.

(7.19)

Therefore, by (7.19), κe ≤ 1

2

and the standard interpolation estimate, we have

‖∂x(v − Iv)‖2L2(T(i+1)) ≤ C ⋅ 2
1−kκi−ke (‖∂ ̂x( ̂v − Îv)‖2L2( ̂T(i+1))

+ ‖∂ ̂z( ̂v − Îv)‖2L2( ̂T(i+1)))

≤ C ⋅ 21−kκi−ke 2

2(i−n)| ̂v|2H2( ̂T(i+1))

≤ C ⋅ 22(i−n) ∑
|α⊥|+α3=2

2

2(1−k)α
3κ2(i−k)α3e κ(2i−2)(|α⊥|−1)e ‖∂α⊥∂α3z v‖2L2(T(i+1))

≤ C ⋅ 22(i−n) ∑
|α⊥|+α3=2

2

−2iα
3κ2i(|α⊥|−1)e ‖∂α⊥∂α3z v‖2L2(T(i+1)). (7.20)

A similar calculation for the derivative with respect to y gives

‖∂y(v − Iv)‖2L2(T(i+1)) ≤ C ⋅ 2
2(i−n) ∑
|α⊥|+α3=2

2

−2iα
3κ2i(|α⊥|−1)e ‖∂α⊥∂α3z v‖2L2(T(i+1)). (7.21)

In the z-direction, by Proposition 3.8, (7.19), κe ≤ 1

2

and following the calculation in (7.20),

‖∂z(v − Iv)‖2L2(T(i+1)) ≤ C(2
1−kκi−ke )κ

2(i−1)
e (2k−1κk−ie )

2‖∂ ̂z( ̂v − Îv)‖2L2( ̂T(i+1))

≤ C ⋅ 21−kκi−ke (‖∂ ̂x( ̂v − Îv)‖2L2( ̂T(i+1))
+ ‖∂ ̂z( ̂v − Îv)‖2L2( ̂T(i+1)))

≤ C ⋅ 22(i−n) ∑
|α⊥|+α3=2

2

−2iα
3κ2i(|α⊥|−1)e ‖∂α⊥∂α3z v‖2L2(T(i+1)). (7.22)

Then, by (7.20)–(7.22) and (7.15)–(7.16), we have obtained the desired estimates for Case II.

Thus, we complete the proof by summing up the estimates for all the tetrahedra T(i+1) in Le,i.

Then we have the interpolation error analysis on an initial e-tetrahedron.

Theorem 7.5. Let T(0) ∈ T0 be an e-tetrahedron. Recall the decomposition u = ureg + using on T(0) from Theo-
rem 6.1. Let Iu be its nodal interpolation on Tn. Then we have

|u − Iu|H1(T(0)) ≤ Ch(‖using‖H2

ae ,σ(T(0)) + ‖ureg‖H2+σ(T(0)) + ‖r
−σ
e ∂2zureg‖L2(T(0))),

where h = 2−n and C depends on T(0) but not on n.

Proof. By (7.9) and Lemma 7.4, it suffices to show

|u
sing
− Iu

sing
|H1(T(n)) ≤ Ch‖using‖H2

ae ,σ(T(n))

for any tetrahedron T(n) ∈ Tn in the last layer Le,n. Since T(n) is either an e- or a ve-tetrahedron, we derive this
estimate in two cases. To simplify the notation, we let v = u

sing
.
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Case I: T(n) is an e-tetrahedron. By Proposition 3.8, themapping Be,n translates T(n) to the reference tetrahe-
dron
̂T = ∆4 ̂x

0
̂x
1
̂x
2
̂x
3
. Consequently, it maps any point (x, y, z) ∈ T(n) to ( ̂x, ̂y, ̂z) ∈ ̂T. For a function v on T(n),

we define ̂v on ̂T by ̂v( ̂x, ̂y, ̂z) := v(x, y, z). Now, let χ be a smooth cut-off function on
̂T such that χ = 0 in

a neighborhood of the edge ̂e := ̂x
0
̂x
1
and= 1 at every other Lagrange node of ̂T. Let r ̂e be the distance to ̂e. Let

̂I ̂v be the interpolation of û on the reference tetrahedron ̂T. Since χ ̂v = 0 in the neighborhood of ̂e, ̂I(χ ̂v) = ̂I ̂v
( ̂v = 0 on ̂e since v ∈ H2

γe ,σ(T(0)) (Theorem 6.1)), and we have

|χ ̂v|2H2( ̂T) ≤ C(‖r
ae−1
̂e ∂2̂z ̂v‖

2

L2( ̂T) + ∑
|α⊥|+α3≤2, α3<2

‖r|α⊥|−1̂e ∂α⊥∂α3̂z ̂v‖
2

L2( ̂T)). (7.23)

Define ŵ := ̂v − χ ̂v. Then, by the usual interpolation error estimate, we have

| ̂v − Îv|H1( ̂T) = |ŵ + χ ̂v − Îv|H1( ̂T) ≤ |ŵ|H1( ̂T) + |χ ̂v − Îv|H1( ̂T)

= |ŵ|H1( ̂T) + |χ ̂v − ̂I(χ ̂v)|H1( ̂T) ≤ C(‖ ̂v‖H1( ̂T) + |χ ̂v|H2( ̂T)), (7.24)

where C depends on, through χ, the nodes on ̂T. Then, using the scaling argument based on (7.10), by (7.24),

(7.23), the relation r ̂e( ̂x, ̂y, ̂z) = κ−ne re(x, y, z) and (3.1), we have

‖∂x(v − Iv)‖2L2(T(n)) ≤ C ⋅ 2
−n(‖∂ ̂x( ̂v − Îv)‖2L2( ̂T) + ‖∂ ̂z( ̂v − Îv)‖

2

L2( ̂T))

≤ C ⋅ 2−n(‖rae−1̂e ∂2̂z ̂v‖
2

L2( ̂T) + ∑
|α⊥|+α3≤2, α3<2

‖r|α⊥|−1̂e ∂α⊥∂α3̂z ̂v‖
2

L2( ̂T))

≤ C(2−2n‖rae−1e ∂2z v‖2L2(T(n)) + ∑
|α⊥|+α3≤2, α3<2

2

−2nα
3‖r|α⊥|−1e ∂α⊥∂α3z v‖2L2(T(n)))

≤ C(2−2n(‖rae−1e ∂2z v‖2L2(T(n)) + ∑
|α⊥|=1
‖∂α⊥∂zv‖2L2(T(n)) + ‖r

−1
e ∂zv‖2L2(T(n)))

+ ∑
|α⊥|≤2
‖r|α⊥|−1e ∂α⊥v‖2L2(T(n)))

≤ C ⋅ 2−2n(‖rae−1e ∂2z v‖2L2(T(n)) + ∑
|α⊥|=1
‖∂α⊥∂zv‖2L2(T(n))

+ ‖r−1e ∂zv‖2L2(T(n)) + ∑
|α⊥|≤2
‖r|α⊥|−1−aee ∂α⊥v‖2L2(T(n))). (7.25)

A similar calculation for the derivative with respect to y gives

‖∂y(v − Iv)‖2L2(T(n)) ≤ C ⋅ 2
−2n(‖rae−1e ∂2z v‖2L2(T(n)) + ∑

|α⊥|=1
‖∂α⊥∂zv‖2L2(T(n))

+ ‖r−1e ∂zv‖2L2(T(n)) + ∑
|α⊥|≤2
‖r|α⊥|−1−aee ∂α⊥v‖2L2(T(n))). (7.26)

In the z-direction, using (7.24), (7.23), (7.10), (3.1) and the calculation in (7.25), we have

‖∂z(v − Iv)‖2L2(T(n)) = 2
nκ2ne ‖∂ ̂z( ̂v − Îv)‖2L2( ̂T)
≤ 2−n(‖∂ ̂x( ̂v − Îv)‖2L2( ̂T) + ‖∂ ̂z( ̂v − Îv)‖

2

L2( ̂T))

≤ C ⋅ 2−2n(‖rae−1e ∂2z v‖2L2(T(n)) + ∑
|α⊥|=1
‖∂α⊥∂zv‖2L2(T(n))

+ ‖r−1e ∂zv‖2L2(T(n)) + ∑
|α⊥|≤2
‖r|α⊥|−1−aee ∂α⊥v‖2L2(T(n))). (7.27)

Recall ae − 1 ≥ −σ and ae < λe. Then, by (7.25)–(7.27), we have

|v − Iv|2H1(T(n)) ≤ C ⋅ 2
−2n(‖r−σe ∂2z v‖2L2(T(n)) + ∑

|α⊥|=1
‖∂α⊥∂zv‖2L2(T(n))

+ ‖r−1e ∂zv‖2L2(T(n)) + ∑
|α⊥|≤2
‖r|α⊥|−1−aee ∂α⊥v‖2L2(T(n))) ≤ Ch

2‖v‖2
H2

ae ,σ(T(n))
,

which proves the estimate for Case I.
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Case II: T(n) is a ve-tetrahedron. Let T(k) ∈ Tk, 1 ≤ k ≤ n, be the ve-tetrahedron such that T(n) ⊆ T(k) and
T(k) is contained in an e-tetrahedron T(k−1) ∈ Tk−1. By Proposition 3.8, the mapping Bn,k transforms T(n)
to a ve-tetrahedron ̂T(n) ∈ T̂1. Thus, Bn,k maps every point (x, y, z) ∈ T(n) to ( ̂x, ̂y, ̂z) ∈ ̂T(n). As in Case I, for

a function v on T(n), we define ̂v on ̂T(n) by ̂v( ̂x, ̂y, ̂z) := v(x, y, z). Now, let χ be a smooth cut-off function

on
̂T(n) such that χ = 0 in a neighborhood of ̂e := ̂x0 ̂x1 of ̂T = ∆4 ̂x0 ̂x1 ̂x2 ̂x3 and χ = 1 at every other Lagrange

node of
̂T(n). Recall the distance r ̂e to ̂e. Since χ ̂v = 0 in the neighborhood of the refined vertex, we have

̂I(χ ̂v) = ̂I ̂v on ̂T(n) and

|χ ̂v|2H2( ̂T(n))
≤ C(‖rae−1̂e ∂2̂z ̂v‖

2

L2( ̂T(n))
+ ∑
|α⊥|+α3≤2, α3<2

‖r|α⊥|−1̂e ∂α⊥∂α3̂z ̂v‖
2

L2( ̂T(n))
). (7.28)

Define ŵ := ̂v − χ ̂v. Then, by the usual interpolation error estimate, we have

| ̂v − Îv|H1( ̂T(n)) = |ŵ + χ ̂v − Îv|H1( ̂T(n)) ≤ |ŵ|H1( ̂T(n)) + |χ ̂v − Îv|H1( ̂T(n))

= |ŵ|H1( ̂T(n)) + |χ ̂v − ̂I(χ ̂v)|H1( ̂T(n)) ≤ C(‖ ̂v‖H1( ̂T(n)) + |χ ̂v|H2( ̂T(n))), (7.29)

where C depends on, through χ, the nodes in the reference element
̂T(n). In Le,n, re(x, y, z) = κn−1e r ̂e( ̂x, ̂y, ̂z).

Therefore, by (7.19), (7.29), (7.28), (3.1) and κe ≤ 1

2

, we have

‖∂x(v − Iv)‖2L2(T(n)) ≤ C ⋅ 2
1−kκn−ke (‖∂ ̂x( ̂v − Îv)‖2L2( ̂T(n))

+ ‖∂ ̂z( ̂v − Îv)‖2L2( ̂T(n))
)

≤ C ⋅ 21−kκn−ke (‖r
ae−1
̂e ∂2̂z ̂v‖

2

L2( ̂T(n))
+ ∑
|α⊥|+α3≤2, α3<2

‖r|α⊥|−1̂e ∂α⊥∂α3̂z ̂v‖
2

L2( ̂T(n))
)

≤ C(22(1−k)κ2(n−k)e ‖rae−1e ∂2z v‖2L2(T(n))
+ ∑
|α⊥|+α3≤2, α3<2

2

2(1−k)α
3κ2(n−k)α3e ‖r|α⊥|−1e ∂α⊥∂α3z v‖2L2(T(n)))

≤ C ⋅ 2−2n(‖rae−1e ∂2z v‖2L2(T(n)) + ∑
|α⊥|=1
‖∂α⊥∂zv‖2L2(T(n))

+ ‖r−1e ∂zv‖2L2(T(n)) + ∑
|α⊥|≤2
‖r|α⊥|−1−aee ∂α⊥v‖2L2(T(n))). (7.30)

A similar calculation for the derivative with respect to y gives

‖∂y(v − Iv)‖2L2(T(n)) ≤ C ⋅ 2
−2n(‖rae−1e ∂2z v‖2L2(T(n)) + ∑

|α⊥|=1
‖∂α⊥∂zv‖2L2(T(n))

+ ‖r−1e ∂zv‖2L2(T(n)) + ∑
|α⊥|≤2
‖r|α⊥|−1−aee ∂α⊥v‖2L2(T(n))). (7.31)

In the z-direction, by (7.19), (7.29), (7.28) and the calculation in (7.30), we have

‖∂z(v − Iv)‖2L2(T(n)) = (2
1−kκn−ke )κ

2(n−1)
e (2k−1κk−ne )

2‖∂ ̂z( ̂v − Îv)‖2L2( ̂T(n))

≤ 21−kκn−ke (‖∂ ̂x( ̂v − Îv)‖2L2( ̂T(n))
+ ‖∂ ̂z( ̂v − Îv)‖2L2( ̂T(n))

)

≤ C ⋅ 2−2n(‖rae−1e ∂2z v‖2L2(T(n)) + ∑
|α⊥|=1
‖∂α⊥∂zv‖2L2(T(n))

+ ‖r−1e ∂zv‖2L2(T(n)) + ∑
|α⊥|≤2
‖r|α⊥|−1−aee ∂α⊥v‖2L2(T(n))). (7.32)

Therefore, by ae − 1 ≥ −σ and ae < λe and by (7.30)–(7.32), we have

|v − Iv|2H1(T(n)) ≤ Ch
2‖v‖2H2

ae ,σ(T(n))
,

which proves the estimate for Case II. Hence, the theorem is proved by summing up the estimates in

Lemma 7.4 and the estimates |u
sing
− Iu

sing
|H1(T(n)) for all the tetrahedra T(n) in Le,n.

Based on the regularity estimates in Theorem 6.1 and the interpolation error estimate in Theorem 7.5, it is

clear that, on an initial e-tetrahedron T(0), |u − Iu|H1(T(0)) ≤ Ch, where h = 2−n and C is independent of n.
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7.3 Analysis on Initial ev-Tetrahedra

In the neighborhood Vec of an edge e and a vertex c, according to Theorem 6.2, we write u = u
reg
+ u

sing
+ uc,

where uc = ∑− 1
2

<λc,k<σ+ 1
2

ckψσc,k. Then the interpolation error on an initial ev-tetrahedron T(0) ∈ T0 satisfies

|u − Iu|H1(T(0)) ≤ |ureg − Iureg|H1(T(0)) + |using − Iusing|H1(T(0)) + |uc − Iuc|H1(T(0)). (7.33)

Theorem 7.6. Let T(0) ∈ T0 be an ev-tetrahedron, and let Lev,i be its ith mesh layer (Definition 3.9). Recall the
weighted space H2

γ,σ specified in Theorem 6.2. Then, for σ given in (2.7), ae and ac given in (3.2) and (3.3),
respectively, and 0 ≤ i ≤ n, in (7.33), we have

|u
reg
− Iu

reg
|H1(Le,i) ≤ Ch(‖ureg‖V2

0

(Le,i) + ‖r
−σ
e ∂2zureg‖L2(Le,i)),

|u
sing
− Iu

sing
|H1(T(0)) ≤ Ch‖using‖H2

γ,σ(T(0)),

|uc − Iuc|H1(T(0)) ≤ Ch,

where n is the number of refinements, h = 2−n; in the first two estimates, C depends on T(0), but not on i; in the
last estimate, C depends on T(0) and f in (1.1).

Proof. Let T(i) ⊂ T(0) be the ev-tetrahedron inTi. Recall themesh layer Lev,i in Definition 3.9 and themapping

Bev,i in (3.7) that translates Lev,i to the reference domain L̂. For a point (x, y, z) ∈ Lev,i, let ( ̂x, ̂y, ̂z) ∈ L̂ be its
image under Bev,i. For a function v on Lev,i, define the function ̂v on L̂ by

̂v( ̂x, ̂y, ̂z) := v(x, y, z). (7.34)

The distance function re to the edge e satisfies re(x, y, z) = κicre( ̂x, ̂y, ̂z) on Lev,i. Meanwhile, Bev,i maps the

triangulationTn on Lev,i to a graded triangulation on L̂ that is obtained after i + 1 − n refinements of the initial

mesh L̂. Note that the subsequent refinements on L̂ are anisotropic with the parameter κe toward e since L̂
does not contain ev- or v-tetrahedra. Then, by the scaling argument using the mapping (3.7), we have

|v − Iv|2H1(Lev,i) ≤ Cκ
i
c| ̂v − Îv|2H1(L̂). (7.35)

Case I: v = u
reg
∈ V2+σ

0

(T(0)) and r−σe ∂2z v ∈ L2(T(0)). Note that this implies v ∈ H2(Lev,i) for i ≤ n. Then, by
(7.35) and by similar calculations as in (7.15) and (7.16), and 1 − σ ≤ ae, we have

|v − Iv|2H1(Lev,i) ≤ Cκ
i
c ⋅ 2

2(i−n)(‖rae−1e ∂2̂z ̂v‖
2

L2(L̂) + ∑
|α⊥|=1
‖∂α⊥∂ ̂z ̂v‖2L2(L̂) + ∑

|α⊥|=2
‖∂α⊥ ̂v‖2L2(L̂))

≤ C ⋅ 2−2n(22iκ4i−2iaec ‖rae−1e ∂2z v‖2L2(Lev,i)

+ 22iκ2ic ∑
|α⊥|=1
‖∂α⊥∂zv‖2L2(Lev,i) + 2

2iκ2ic ∑
|α⊥|=2
‖∂α⊥v‖2L2(Lev,i))

≤ C ⋅ 2−2n(‖rae−1e ∂2z v‖2L2(Lev,i) + ∑
|α|=2
‖∂αv‖2L2(Lev,i))

≤ C ⋅ 2−2n(‖r−σe ∂2z v‖2L2(Lev,i) + ∑
|α|=2
‖∂αv‖2L2(Lev,i))

≤ Ch2(‖v‖2V2

0

(Le,i)
+ ‖r−σe ∂2z v‖2L2(Le,i)). (7.36)

This proves the first estimate in the theorem.

Case II: v = u
sing
∈ H2

γ,σ(T(0))with γc = 1 + σ and γe < λe. The following estimate was obtained in [22, Corol-

lary 5.16] for functions inH2

γ∗ ,μ(T(0)), where γ∗e , γ∗c ∈ [0, 1] and γ∗e < λe, γ∗c < λc + 1

2

and 1 − μ ≤ ae:

|v − Iv|H1(T(0)) ≤ Ch‖v‖H2

γ∗ ,μ(T(0))
. (7.37)

SinceH2

γ,σ(T(0)) ⊂ H2

γ∗ ,μ(T(0)), we have

|v − Iv|H1(T(0)) ≤ Ch‖v‖H2

γ∗ ,μ(T(0))
≤ Ch‖v‖H2

γ,σ(T(0)).

This proves the second estimate in the theorem.
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Case III: v = uc in (7.33). Recall that if zero is an eigenvalueof theLaplace–Beltrami operator in the expansion

of uc, namely λc,0 = 0, the corresponding term is a constant function, which the finite element interpolation

can completely resolve. Therefore, we proceed to consider the interpolation error in the case that λc,0 > 0.
Recall fromLemma6.3 that v = v

1
+ v

2
. Therefore, to obtain |v − Iv|H1(T

0
) in this case, it is sufficient to analyze

|v
1
− Iv

1
|H1(T

0
) and |v2 − Iv2|H1(T

0
), respectively.

We first estimate |v
1
− Iv

1
|H1(T

0
). For i < n, by the scaling map (3.7), Rc ∼ κic, (3.1), and the estimates in

(7.20)–(7.22) and (7.15)–(7.16), we have

|v
1
− Iv

1
|2H1(Lev,i) ≤ Cκ

i
c ⋅ 2

2(i−n)(‖rae−1e ∂2̂z ̂v1‖
2

L2(L̂) + ∑
|α⊥|=1
‖∂α⊥∂ ̂z ̂v1‖2L2(L̂) + ∑

|α⊥|=2
‖∂α⊥ ̂v

1
‖2L2(L̂))

≤ C ⋅ 2−2n(22iκ4i−2iaec ‖rae−1e ∂2z v1‖2L2(Lev,i)

+ 22iκ2ic ∑
|α⊥|=1
‖∂α⊥∂zv1‖2L2(Lev,i) + 2

2iκ2ic ∑
|α⊥|=2
‖∂α⊥v

1
‖2L2(Lev,i))

≤ C ⋅ 2−2n(‖R2−ac−aec rae−1e ∂2z v1‖2L2(Lev,i)

+ ∑
|α⊥|=1
‖R1−acc ∂α⊥∂zv1‖2L2(Lev,i) + ∑

|α⊥|=2
‖R1−acc ∂α⊥v

1
‖2L2(Lev,i)).

According to Lemma 6.3, Rσc+σc,ec r−σc,ee ∂2z v1 ∈ L2(Vec), Rσcc ∂α⊥∂zv1 ∈ L2(Vec) (|α⊥| = 1), and Rσc∂α⊥v1 ∈ L2(Vec)
(|α⊥| = 2), where σc,e ∈ (0, 1) and any σc > 1

2

− λc,0. Choose σc,e > 1 − ae and σc = 1 − ac. Then we have

|v
1
− Iv

1
|2H1(Lev,i) ≤ C ⋅ 2

−2n(‖R1−ac+σc,ec r−σc,ee ∂2z v1‖2L2(Lev,i)

+ ∑
|α⊥|=1
‖R1−acc ∂α⊥∂zv1‖2L2(Lev,i) + ∑

|α⊥|=2
‖R1−acc ∂α⊥v

1
‖2L2(Lev,i))

≤ C ⋅ 2−2n(‖Rσc+σc,ec r−σc,ee ∂2z v1‖2L2(Lev,i)

+ ∑
|α⊥|=1
‖Rσcc ∂α⊥∂zv1‖2L2(Lev,i) + ∑

|α⊥|=2
‖Rσcc ∂α⊥v1‖2L2(Lev,i)). (7.38)

For i = n, Bev,n(Lev,n) = L̂ = T(0). With λc > 0, recall the condition Rσc−2c v
1
∈ L2(Vce) for any σc > 1

2

− λc in
Lemma 6.3. This implies v

1
(c) = 0. For (x, y, z) ∈ Lev,n, let ( ̂x, ̂y, ̂z) ∈ L̂ be its image underBev,n. For a function

v on Lev,n, recall the scaling (7.34) ̂v on L̂.
Now, let χ be a smooth cut-off function on L̂ such that χ = 0 in a neighborhood of the vertex c and

χ = 1 at every other node of L̂. Let ̂I ̂v be the interpolation of ̂v on the reference tetrahedron L̂. Since χ ̂v = 0
in the neighborhood of c, ̂I(χ ̂v) = ̂I ̂vI = Îv. Therefore, by (7.35), Rc ≤ Cκnc , Rc( ̂x, ̂y, ̂z) = κ−nc Rc(x, y, z) and
re( ̂x, ̂y, ̂z) = κ−nc re(x, y, z), we have

|v
1
− Iv

1
|2H1(Lev,n) ≤ Cκ

n
c | ̂v1 − Îv1|2H1(L̂) ≤ Cκ

n
c (| ̂v1 − χ ̂v1|2H1(L̂) + |χ ̂v1 −

̂I(χ ̂v
1
)|2H1(L̂))

≤ Cκnc (‖ ̂v1‖2H1(L̂) + |χ ̂v1|
2

H2(L̂))

≤ Cκnc(‖ ̂v1‖2H1(L̂) + ∑
|α|=2, α

3
≤1
‖R1−acc ∂α⊥∂α3̂z ̂v1‖

2

L2(L̂) + ‖R
1−ac+σc,e
c r−σc,ee ∂2̂z ̂v1‖

2

L2(L̂))

≤ C ⋅ 2−2n(22nκ−2nc ‖v1‖2L2(Lev,n) + 2
2n|v

1
|2H1(Lev,n) + 2

2nκ2nc (κ
2nac−2n
c )

× ( ∑
|α⊥|=2
‖R1−acc ∂α⊥v

1
‖2L2(Lev,n) + ∑

|α⊥|=1
‖R1−acc ∂α⊥∂zv1‖2L2(Lev,n)

+ ‖R1−ac+σc,ec r−σc,ee ∂2z v1‖2L2(Lev,n)))

≤ C ⋅ 2−2n(‖R−1−acc v
1
‖2L2(Lev,n) + ∑

|α|=1
‖R−acc ∂αv

1
‖2L2(Lev,n)

+ ∑
|α⊥|=2
‖R1−acc ∂α⊥v

1
‖2L2(Lev,n) + ∑

|α⊥|=1
‖R1−acc ∂α⊥∂zv1‖2L2(Lev,n)

+ ‖R1−ac+σc,ec r−σc,ee ∂2z v1‖2L2(Lev,n))
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≤ C ⋅ 2−2n(‖Rσc−2c v
1
‖2L2(Lev,n) + ∑

|α|=1
‖Rσc−1c ∂αv

1
‖2L2(Lev,n)

+ ∑
|α⊥|=2
‖Rσcc ∂α⊥v1‖2L2(Lev,n) + ∑

|α⊥|=1
‖Rσcc ∂α⊥∂zv1‖2L2(Lev,n)

+ ‖Rσc+σc,ec r−σc,ee ∂2z v1‖2L2(Lev,n)), (7.39)

where we chose σc = 1 − ac and any σc,e > 1 − ae. Therefore, by (7.38), (7.39) and Lemma 6.3, we have

|v
1
− Iv

1
|2H1(T(0)) ≤ Ch

2

. (7.40)

Now, for |v
2
− Iv

2
|H1(T

0
). Recall from Remark 6.4 that v

2
satisfies v

2
∈ H2

γ,σ(V
e
c)with γe = ae, γc = ac and

σ = σc,e. Choose σc,e ≥ 1 − ae ∈ (0, 1). Then, basedon the estimates in [22, Corollary 5.16] and inLemma6.3,

we have

|v
2
− Iv

2
|H1(T(0)) ≤ Ch‖v2‖H2

γ,σ(T(0)) ≤ Ch. (7.41)

Thus, the theorem is proved by the estimates in (7.36), (7.37), (7.40) and (7.41).

Hence, based on the interpolation error estimates for different initial tetrahedra, we obtain the global error

analysis.

Corollary 7.7. For the anisotropic finite element method proposed in Algorithm 3.4 solving equation (1.1) with
f ∈ Hσ(Ω) and σ ∈ [0, 1) satisfying (2.7), σ ̸= λe,k − 1, for all k ∈ ℕ∗, e ∈ E (see Theorem 6.1), and σ ̸= λc,k − 1

2

for all k ∈ ℕ, c ∈ C (see Theorem 6.2), we have ‖u − un‖H1(Ω) ≤ Ch, where h = 2−n, and C depends on the initial
triangulation T

0
and f , but not on n.

Proof. We first have the optimal interpolation error estimate |u − Iu|H1(Ω) ≤ Ch by summing up the interpo-

lation error estimates Lemma 7.1 (o-tetrahedra), Corollary 7.3 (v- and ve-tetrahedra), Theorem 7.5 (e-tetra-
hedra) and Theorem 7.6 (ev-tetrahedra), and by the regularity estimates in Section 6. The desired estimate

for ‖u − un‖H1(Ω) is a consequence of the Poincaré inequality and Céa’s lemma.

8 Numerical Results

In this section, we present numerical test results to verify the error analysis in Corollary 7.7 for the proposed

anisotropic finite element method (Algorithm 3.4) solving elliptic equations. Our numerical tests are imple-

mented in two typical polyhedral domains: the prism domain and the Fichera domain. We shall demonstrate

three numerical examples (Examples 8.1–8.3) for the prism domain and one example (Example 8.4) for the

Fichera domain.

The first set of tests are for the prism domain. Let Ω
1
be the square with vertices at (1, 0), (0, 1),

(−1, 0), (0, −1), and let Ω
2
be the triangle with vertices at (0, 0), (−1, 0), (0, −1). Define the prism domain

Ωp = (Ω1
\ Ω

2
) × (0, 1). For a point (x, y, z) ∈ Ω, denote by (r, θ) the polar coordinates of its projection in

the xy-plane (r(x, y, z) = r(x, y) and θ(x, y, z) = θ(x, y)). In the first two numerical examples (Examples 8.1

and 8.2), we are especially interested in the performance of the numerical methodwhen the Neumann condi-

tion is imposed on both adjacent faces of the singular edge. For pure Dirichlet problems, we refer to [21, 22].

In the third example (Example 8.3), we illustrate our method with the presence of a DN singular edge.

In the first two examples, consider the elliptic equation with the mixed boundary condition

{{{
{{{
{

−∆u = 1 in Ωp ,

u = r
2

3
cos

2(θ + π
2

)
3

on Γ
Dir
,

∂nu = 0 on Γ
Neu

,

(8.1)

where Γ
Dir

and Γ
Neu

consist of boundary faces of the polyhedron Ωp. By imposing Dirichlet and Neumann

boundary conditions ondifferent faces,we keep the edge e = {(0, 0, z) for 0 < z < 1} as the singularNeumann



172 | H. Li and S. Nicaise, A Priori Analysis of an Anisotropic Finite Element Method

Figure 3: Graded meshes on the prism domain (left to right): the initial mesh, mesh after one refinement, mesh after three
refinements (κe = κc = 0.2).

edge. We will use the graded mesh toward the edge e and its two endpoints, as described in Algorithm 3.4,

in the finite element approximation. See Figure 3 for the case κe = κc = 0.2.

Example 8.1. We impose the Neumann condition on the two faces adjacent to the edge e and impose the

Dirichlet condition on all the other faces (including the top and bottom faces) in equation (8.1). See Fig-

ure 4. Thus, e is a Neumann edge, and other edges are either Dirichlet edges or DN edges (see the description

before (2.4)).

According to (2.4) (see also [12]), the edge e is the only singular edge with λe = 2

3

, and the two vertices c
(its two endpoints) satisfy λc + 1

2

> λe. Other vertices and edges of Ωp are regular in this case. In addition,

the right-hand side function in (8.1) belongs to Hσ(Ωp) for any σ ∈ [0, 1). In fact, the solution u ∈ H1+s(Ωp)
for s < 2

3

. Therefore, based on the conditions in (3.2) and (3.3), and by Corollary 7.7, it is sufficient to

obtain the optimal convergence rate in the finite element method if we choose ae ∈ (0, 2
3

) for the edge e
and ac ∈ (0, ae] for its two endpoints. This gives rise to the following optimal range of the grading param-

eters: κc ≤ κe = 2−
1

ae < 2−
3

2 ∼ 0.353 near e, and quasi-uniform meshes (the associated grading parameters

being

1

2

) for all the other edges and vertices.

In Table 1, we display the convergence rates of the finite element solution on proposed anisotropic

meshes associated with different values of the grading parameter for Example 8.1. In all these meshes,

we choose κ = κe = κc for the singular edge e and the two endpoints c (Figure 3). Here, j is the level of

refinements. Denote by uj the linear finite element solution on the mesh after j refinements. Since the exact

solution is not known, the convergence rate is computed using the numerical solutions for successive mesh

refinements

convergence rate = log
2
(
|uj − uj−1|H1(Ω)

|uj+1 − uj|H1(Ω)
). (8.2)

As j increases, the dimension of the discrete system is O(23j). Therefore, the asymptotic convergence rate

in (8.2) is a reasonable indicator of the actual convergence rate for the numerical solution. For example,

Figure 4: Example 8.1 (two Neumann faces): the top view of Ωp, top Dirichlet face marked in blue (left); the absolute value of the
numerical solution (right).



H. Li and S. Nicaise, A Priori Analysis of an Anisotropic Finite Element Method | 173

j κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5
3 0.65 0.72 0.75 0.71 0.61
4 0.81 0.83 0.84 0.77 0.64
5 0.89 0.91 0.90 0.81 0.66
6 0.95 0.96 0.94 0.83 0.67
7 0.98 0.98 0.96 0.84 0.67
8 0.99 0.99 0.97 0.85 0.67

Table 1: The H1 convergence rates in Example 8.1.

when the numerical solution approximates the singular solution at the optimal convergence rate as described

in Corollary 7.7, the convergence rate in (8.2) shall converge to 1 as the number of refinements j increases.
On quasi-uniform meshes, the convergence rate (8.2) is however asymptotically bounded by

2

3

∼ 0.667 due
to the fact that the solution is singular in Ωp (u ∈ H1+s(Ωp) for s < 2

3

).

It is clear that the above theoretical predictions are confirmed by the numbers in Table 1. Namely, when

the grading parameter to the singular edge and its two endpoints is in the optimal range

κ = κe = κc = 0.1, 0.2, 0.3 < 0.353,

the convergence rates in Table 1 converge to 1, which implies the optimal convergence rate in the finite ele-

mentmethod is achieved on the anisotropicmeshes proposed in Algorithm 3.4. For κ = 0.4, 0.5 > 0.353, the
convergence is not optimal. In particular, the convergence rates for κ = 0.5 is also very close to the theoretical
bound

2

3

as discussed above.

In the second example, in addition to theNeumann edge,we shall confirm the effectiveness of our numer-

ical scheme when the domain has Neumann vertices, namely vertices surrounded by Neumann faces.

Example 8.2. In equation (8.1), the Neumann condition is imposed on the two faces adjacent to the edge e
and also on the top and bottom faces of the domain Ωp. The Dirichlet condition is imposed on all the other

side faces. Therefore, e is a Neumann edge, and its two endpoints c are Neumann vertices.

According to (2.4) (see also [12]), the edge e is the only singular edge with λe = 2

3

and the two vertices c are
regular vertices. Similar to Example 8.1, all the other vertices and edges of Ωp are regular. Note that the right-

hand side function in (8.1) still belongs to Hσ(Ωp) for any σ ∈ [0, 1), and the solution u ∈ H1+s(Ωp) for s < 2

3

.

Therefore, based on the conditions in (3.2) and (3.3), and byCorollary 7.7, it is sufficient to obtain the optimal

convergence rate in thefinite elementmethod ifwe choose ae ∈ (0, 2
3

) for the edge e and ac ∈ (0, ae] for its two
endpoints. These are the same conditions as in Example 8.1 because the error analysis in Section 7 ensures

that the solution near the Neumann vertex can be approximated well by the finite element solution. Hence,

the optimal range of the grading parameters are κc ≤ κe = 2−
1

ae < 2−
3

2 ∼ 0.353 near e, and quasi-uniform

meshes (the associated grading parameters being

1

2

) for all the other edges and vertices.

Figure 5: Example 8.2 (four Neumann faces): the top view of Ωp, top Neumann face marked in red (left); the absolute value of the
numerical solution (right).
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level κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5
3 0.64 0.70 0.73 0.68 0.57
4 0.80 0.83 0.82 0.75 0.63
5 0.88 0.90 0.89 0.81 0.66
6 0.95 0.96 0.94 0.84 0.67
7 0.98 0.98 0.96 0.85 0.67
8 0.99 0.99 0.97 0.86 0.67

Table 2: The H1 convergence rates in Example 8.2.

The numerical convergence rates (8.2) are reported in Table 2 on the anisotropic meshes associated with

different values of the grading parameter. As in Example 8.1, we choose κ = κe = κc for the singular edge e
and the two endpoints c. It is clear that the above theoretical predictions are confirmed by the numbers in

Table 2. The convergence rate is optimal when κ = 0.1, 0.2, 0.3 < 0.353 is in the optimal range, and it slows

down when κ = 0.4, 0.5 > 0.353. As discussed above, the anisotropic algorithm can give rise to the optimal

numerical approximation for equations with mixed boundary conditions, even with Neumann edges and

vertices.

In the third example for the prism domain, we test the anisotropic algorithm with the presence of a sin-

gular edge with the mixed boundary condition. Instead of equation (8.1), we shall solve another form of

equation (1.1).

Example 8.3. Consider equation (1.1)with f = 1 in the prismdomainΩp.We impose theNeumann boundary

condition on one face adjacent to the edge e and impose the Dirichlet boundary condition on all the other

faces (see Figure 6). Thus, e is the singular edge surrounded by faces with mixed boundary conditions.

According to (2.4), e is the only singular edge with λe = 1

3

. Note that the right-hand side function in (1.1)

belongs to Hσ(Ωp) for any σ ∈ [0, 1), and the solution u ∈ H1+s(Ωp) for s < 1

3

. Based on Algorithm 3.4, it is

sufficient to obtain the optimal convergence rate in the finite element method if we choose ae ∈ (0, 1
3

) for
the edge e and ac ∈ (0, ae] for its two endpoints. Hence, the optimal range of the grading parameters are:

κc ≤ κe = 2−
1

ae < 2−3 = 0.125 near e, and quasi-uniform meshes for all the other edges and vertices.

Figure 6: Example 8.3 (a DN singular edge): Neumann face marked in red and Dirichlet face in blue (left);
the numerical solution (right).

level κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5
3 0.43 0.43 0.48 0.56 0.60
4 0.72 0.73 0.72 0.70 0.68
5 0.87 0.86 0.81 0.72 0.64
6 0.93 0.90 0.80 0.66 0.54
7 0.96 0.90 0.76 0.58 0.45
8 0.97 0.89 0.70 0.52 0.39

Table 3: The H1 convergence rates in Example 8.3.
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We summarize the numerical convergence rates for Example 8.3 in Table 3, which again verifies the the-

oretical prediction. Namely, when the grading parameter κ = κe = κc < 0.125, the optimal convergence rate

is achieved, while it is not the case for κ > 0.125.
Before we discuss the last numerical example, we define a Fichera domain as follows. Let Ω

1
= (−1, 1)3

and Ω
2
= (0, 1)3 be two cubes. Then the Fichera domain is Ωf := Ω1

\ Ω
2
. In this example, we shall show the

test results for solving equation (1.1) in Ωf .

Example 8.4. In equation (1.1), let f = 1. We impose the Neumann boundary condition on the two faces that

touch the center vertex of the Fichera domain Ωf and impose the Dirichlet boundary condition on all the

other faces. See Figure 7.

Therefore, according to (2.4), there are three singular edges e (the edges touching the center vertex), and the
endpoints c of these singular edges are possible singular vertices. See Figure 8. For the Neumann singular

edge, we have λe = 2

3

, and for the two DN singular edges, we have λe = 1

3

. In fact, the solution satisfies the

global regularity u ∈ H1+s(Ωf ) for s < 1

3

. We will use the graded mesh toward the singular edges and their

endpoints, as described in Algorithm 3.4, in the finite element approximation. In particular, to simplify the

presentation, we shall choose the same parameter κe for all the singular edges, and the same parameter

κc = κe for all their endpoints. See Figure 8 for the case κe = κc = 0.2. Recall that, for any possible singu-
lar vertex c, λc + 1

2

> 1

2

. Hence, based on (3.2) and (3.3), it is sufficient to choose κc = κe < 2−3 = 0.125
for all the singular edges and their endpoints in order to obtain the optimal convergence in the numerical

approximation.

The numerical convergence rates for different values of the grading parameter in Example 8.4 are listed

in Table 4. As predicted by the theory, for κ = κc = κe > 0.125, the convergence is not optimal, while for

κ = 0.1 < 0.125, the numbers are increasing toward the optimal rate. We stopped at level 7 because the

resources needed to extend the calculation to the next level of refinement have exceeded our computing

capability. For instance, the refinement to the next level will generate more than 5 billion tetrahedra and

Figure 7: Example 8.4 (three singular edges in a Fichera domain): Neumann faces marked in red and Dirichlet faces in blue (left);
the numerical solution (right).

Figure 8: Graded meshes on the Fichera domain (left to right): the initial mesh, mesh after one refinement,
mesh after three refinements (κe = κc = 0.2).
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level κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5
3 0.58 0.63 0.65 0.65 0.63
4 0.78 0.81 0.80 0.76 0.70
5 0.85 0.88 0.83 0.75 0.65
6 0.88 0.89 0.81 0.68 0.54
7 0.91 0.88 0.75 0.59 0.45

Table 4: The H1 convergence rates in Example 8.4.

1 billion nodes. Nevertheless, according to Table 4, there is a clear improvement in convergence rates using

the appropriate graded meshes (κ < 0.125) compared with other graded meshes (κ > 0.125), and it is rea-

sonable to expect the rates for κ = 0.1 will converge to 1 when the asymptotic region is reached with further

refinements.
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