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Abstract. Let Ω ⊂ Rd, d ! 1, be a bounded domain with piecewise
smooth boundary ∂Ω and let U be an open subset of a Banach space
Y . Motivated by questions in “Uncertainty Quantification,” we consider
a parametric family P = (Py)y∈U of uniformly strongly elliptic, second
order partial differential operators Py on Ω. We allow jump discontinu-
ities in the coefficients. We establish a regularity result for the solution
u : Ω × U → R of the parametric, elliptic boundary value/transmission
problem Pyuy = fy , y ∈ U , with mixed Dirichlet-Neumann bound-
ary conditions in the case when the boundary and the interface are
smooth and in the general case for d = 2. Our regularity and well-
posedness results are formulated in a scale of broken weighted Sobolev
spaces K̂m+1

a+1 (Ω) of Babuška-Kondrat’ev type in Ω, possibly augmented
by some locally constant functions. This implies that the parametric,
elliptic PDEs (Py)y∈U admit a shift theorem that is uniform in the
parameter y ∈ U . In turn, this then leads to hm-quasi-optimal rates
of convergence (i. e., algebraic orders of convergence) for the Galerkin
approximations of the solution u, where the approximation spaces are
defined using the “polynomial chaos expansion” of u with respect to a
suitable family of tensorized Lagrange polynomials, following the method
developed by Cohen, Devore, and Schwab (2010).

1 Introduction

Recently, questions related to differential equations with random coefficients have
received a lot of attention due to the practical applications of these problems
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[2,7,9,16,17]. Our paper is motivated by the approach in [6,13], where families
of differential operators on polyhedral domains indexed by y ∈ U , were studied.
As in those papers, U is an open subset of a Banach space Y , which allows us
to study the analyticity of the solution in terms of y ∈ U .

We here study the properties of solutions to a family of strongly elliptic, mixed
boundary value/transmission problems

Pyuy(x) = Pu(x, y) = fy(x) = f(x, y), x ∈ Ω, y ∈ U (1)

on a domain Ω ⊂ Rd, d ≥ 1. The domain Ω is assumed to be piecewise
smooth and bounded. Thus, for each y ∈ U , we are given a second order,
uniformly strongly positive, parametric partial differential operator Py on Ω
whose coefficients are functions of (x, y) ∈ Ω × U and are allowed to have
jump discontinuities across a fixed interface Γ . More precisely, we assume that
Ω = ∪K

k=1Ωk, where Ωk are disjoint domains with piecewise smooth boundaries
and Γ :=

(
∪K
k=1 ∂Ωk

)
! ∂Ω.

Under suitable regularity assumptions on the coefficients of P and on the
source term f : Ω × U → R, we establish in Section 5 a regularity and well-
posedness result for the solution u : Ω×U → R of the parametric, elliptic bound-
ary value/transmission problem (1) with mixed Dirichlet-Neumann boundary
conditions. Our regularity result is formulated in a scale of broken weighted
Sobolev spaces K̂m+1

a+1 (Ω) = ⊕K
k=1K

m+1
a+1 (Ωk) of Babuška-Kondrat’ev type in Ω,

for which we prove that our elliptic PDEs (Py)y∈U admit a shift theorem that
is uniform in the parameter y ∈ U . We deal completely in this paper with the
cases when the boundary ∂Ω and the interface Γ are smooth and disjoint. We
also indicate how to proceed in the general case for d = 2. Our results gener-
alize the results of [13] by allowing jump discontinuities in the coefficients and
by allowing adjacent edges to be endowed with Neumann-Neumann boundary
conditions. We will be therefore brief in our presentation, referring to [13], as
well as [6,7] for more details.

The main contribution of this paper is to study the regularity of the solution
of a (non-parametric) transmission/boundary value problem with rather weak
smoothness assumptions on the coefficients. As far as we know, this paper is the
only place where a complete proof for the regularity of transmission problems is
given, even in the case of smooth coefficients. The results are general enough so
that one can use the approach in [6,13] to obtain regularity results for families
and then to obtain optimal rates of convergence for the Galerkin method. An
abstract version of this method is explained in [3]. These issues will be discussed
in more detail in a forthcoming paper.

The paper is organized as follows. In Section 2 we formulate our parametric
partial differential boundary value/transmission problem and introduce some
of our main assumptions. We also discuss the needed notions of positivity for
families of operators and derive some simple consequences. In Section 3, we
review the “broken” version of usual Sobolev spaces, and then formulate and
prove the main results, Theorem 1, which is a regularity and well-posedness
result for non-parametric solutions in smooth case. In Section 4, we recapitulate
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regularity and well-posedness results for the non-parametric, elliptic problem
from [4,5,10], the main result being Theorem 2. This theorem is then generalized
to families in Section 5, thus yielding our main regularity and well-posendess
result for parametric families of uniformly strongly boundary value/transmission
problems, namely Theorem 3. As mentioned above, this result is formulated in
broken weighted Sobolev spaces (the so called “Babuška-Kondrat’ev” spaces).
As in [6,7,13] these results lead to hm-quasi-optimal rates of convergence for a
suitable Galerkin method for the approximation of our parametric solution u.

Acknowledgements. VN acknowledges the support of the Hausdorff Institute
for Mathematics (HIM) in Bonn during the HIM Trimester “High dimensional
approximation,” where this work was initiated. We also thank Christoph Schwab
for several useful discussions.

2 Ellipticity, Positivity, Solvability for Parametric
Families

We now formulate our parametric partial differential boundary value/
transmission problem and introduce some of our main assumptions.

2.1 Notation and Assumptions

By Ω ⊂ Rd, d ≥ 1, we shall denote a connected, bounded piecewise smooth
domain, which we assume is decomposed into finitely many subdomains Ωk

with piecewise smooth boundary, Ω = ∪K
k=1Ωk. We obtain results on the spatial

regularity of PDEs whose data depend on a parameter vector y ∈ U ⊂ Y , where
U is an open subset of a Banach space Y . By aijpq, b

i
pq, cpq : Ω × U → R, 1 ≤

i, j ≤ d, we shall denote bounded, measurable functions satisfying smoothness
and other assumptions to be made precise later. We denote by A = (aijpq, b

i
pq, cpq).

Let us denote by ∂i =
∂

∂xi
, i = 1, . . . , d. We shall then denote by PA = [PA

pq] a
µ× µ matrix of parametric differential operators in divergence form

PA
pqu(x, y) :=



−
d∑

i,j=1

∂i
(
aijpq(x, y)∂j

)
+

d∑

i=1

bipq(x, y)∂i + cpq(x, y)



 u(x, y), (2)

where x ∈ Ω and y ∈ U . Note that the derivatives act only in the x-direction
and y is just a parameter. The matrix case is needed in order to handle the case
of systems, such as that of (anisotropic) linear elasticity.

A matrix P = [Ppq]
µ
p,q=1 of differential operators acts on vector-valued func-

tions u = (uq)
µ
q=1 in the usual way (Pu)p =

∑µ
q=1 Ppquq, for u = (uq) ∈

C∞(Ω × U)µ. We recall that H−1(Ω) is defined as the dual of H1
0 (Ω) := {u ∈

H1(Ω), u|∂Ω = 0} with pivot L2(Ω). Occasionally, we shall need to specialize a
family P for a particular value of y, in which case we shall write Py : C∞(Ω)µ →
H−1(Ω)µ for the induced operator. We emphasize that we allow P to have non-
smooth coefficients, so that Pu may be non-smooth in general.
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2.2 Boundary and Interface Conditions

We impose mixed Dirichlet and Neumann boundary conditions. To this end, we
assume there is given a closed set ∂DΩ ⊂ ∂Ω, which is a union of polygonal
subsets of the boundary and we let ∂NΩ := ∂Ω ! ∂DΩ. The set ∂DΩ will be
referred to as “Dirichlet boundary” and ∂NΩ as “Neumann boundary,” accord-
ing to the type of boundary conditions that we associate to these parts of the
boundary. The case of cracks is also allowed, provided that one treats different
sides of the crack as different parts of the boundary, as in [10], for instance,
but we choose not to treat this case explicitly in this paper. We then define the
conormal derivatives

(∇A
ν u)p(x, y) =

µ∑

q=1

d∑

i,j=1

νia
ij
pq(x, y)∂juq(x, y), x ∈ ∂NΩ, y ∈ U, (3)

where ν = (νi) is the outward unit normal vector at x ∈ ∂NΩ. The conormal
derivatives ∇A

ν u
± at the interface Γ are defined similarly, using an arbitrary but

fixed labeling of the two sides of the interface into a positive and a negative part.
We shall also need the spacesH1

D(Ω) andH−1
D (Ω) for vector-valued functions:

H1
D(Ω) := {u ∈ H1(Ω)µ, u = 0 on ∂DΩ} and H−1

D (Ω), defined to be the dual
of H1

D(Ω) with pivot space L2(Ω). Note that we assume here as in [13] that we
have the same type of boundary conditions for all components uq of the solution
vector u.

Recall that our domain Ω is decomposed into K subdomains of the same
type (with piecewise smooth boundary), Ω = ∪K

k=1Ωk. We then denote by Γ :=(
∪K
k=1 ∂Ωj

)
! ∂Ω the interface of our problem. We also fix arbitrarily the sides

of the interface, and we thus denote by u+, respectively u− the non-tangential
limits of u at the two sides of the interface. We define similarly the conormal
derivatives ∇A

ν u
+ and ∇A

ν u
− at the interface, but using the two sided limits

of the coefficients aijpq at Γ . We consider the parametric family of boundary
value/interface problems






PAu(x, y) = f(x, y) x ∈ Ω,
u(x, y) = 0 x ∈ ∂DΩ,
∇A

ν u(x, y) = g(x, y) x ∈ ∂NΩ
u+(x, y)− u−(x, y) = 0 x ∈ Γ
∇Au+(x, y)−∇Au−(x, y) = h(x, y) x ∈ Γ

(4)

where PA is as in Equation (2), ∇A
ν is as in Equation (3), and y ∈ U . We stress

that for us the dependence of PA on its coefficients, that is on A, is important,
which justifies our notation.

2.3 Ellipticity and Positivity for Differential Operators

In this subsection we recall the definition of the positivity property for parametric
families of differential operators. Let us therefore consider, for any y ∈ U , the
parametric bilinear form B(y; · , · ) defined by
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B(y; v, w) :=
∫
x∈Ω

∑µ
p,q=1

(∑d
i,j=1 a

ij
pq(x, y)∂ivp(x, y)∂jwq(x, y)

∑d
i=1 b

i
pq(x, y)∂ivp(x, y)wq(x, y) + cpq(x, y)vp(x, y)wq(x, y)

)
dx , y ∈ U. (5)

Definition 1. The family (Py)y∈U is called uniformly strictly positive definite
on H1

0 (Ω)µ ⊂ V ⊂ H1(Ω)µ if the coefficients aijpq are symmetric in i, j and in p, q
(that is, aijpq = ajipq = aijqp, for all i, j, p, and q), and if there exist 0 < r < R < ∞
such that for all y ∈ U , and v, w ∈ V , we have

|B(y; v, w)| ≤ R‖v‖H1(Ω)‖w‖H1(Ω) and r‖v‖2H1(Ω) ≤ B(y; v, v).

If U is reduced to a single point, that is, if we deal with the case of a single
operator instead of a family, then we say that P is strictly positive definite.
Throughout this paper, we shall assume that (Py)y∈U is uniformly strictly pos-
itive definite. Positivity is closely related to ellipticity.

Definition 2. The family (Py)y∈U is called uniformly strongly elliptic if the
coefficients aijpq are symmetric in i, j and in p, q and if there exist 0 < re < Re <

∞ such that for all x ∈ D, y ∈ U , ξ ∈ Rd, and η ∈ Rµ

re|ξ|2|η|2 ≤
µ∑

p,q=1

d∑

i,j=1

aijpq(x, y)ξiξjηpηq ≤ Re|ξ|2|η|2 . (6)

In case one is interested only in scalar equations (not in systems), then for
V = H1

D(Ω), the assumption that our family Py is uniformly positive definite
can be replaced with the (slightly weaker) assumption that the family Py is

uniformly strongly elliptic, that
∑d

i=1 ∂ib
i = 0 in Ω,

∑d
i=1 νib

i = 0 on ∂NΩ,
c ≥ 0, and ∂DΩ -= ∅ (in which case it also follows that ∂DΩ has a non-empty
measure). In general, a uniformly strictly positive family P will also be uniformly
strongly elliptic.

2.4 Consequences of Positivity

The usual Lax-Milgram lemma gives the following result as in [6]. Recall the
constant r from Definition 1.

Proposition 1. Assume that fy := f( · , y) ∈ H−1
D (Ω), for any y ∈ U . Also,

assume that the family P is uniformly strictly positive definite. Then our family
of boundary value problems Pyuy = fy, uy ∈ H1

D(Ω), i. e., Equation (4), admits
a unique solution uy = P−1

y fy. Moreover, ‖P−1
y ‖L(H−1

D ;H1
D) ≤ r−1, for all y ∈ U.

The parametric solution uy ∈ H1
D(Ω) of Proposition 1 is then obtained from

the usual weak formulation: given y ∈ U , find uy ∈ V := H1
D(Ω) such that

B(y;uy, w) = (fy, w) +

∫

∂NΩ
gywdS +

∫

Γ
hywdS, ∀w ∈ V, (7)

where (fy, w) denotes the L2(Ω) inner product and dS is the surface measure
on ∂Ω or on Γ . Also, fy(x) = f(x, y), and similarly for uy, gy, and hy.
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3 Broken Sobolev Spaces and Higher Regularity
of Non-parametric Solutions in the Smooth Case

One of our main goals is to obtain regularity of the solution u both in the space
variable x and in the parameter y. It is convenient to split this problem into two
parts: regularity in x and regularity in y. We first address regularity in x in the
case when the boundary ∂Ω and the interface Γ are smooth and disjoint. We also
assume that each connected component of the boundary is given a single type
of boundary conditions: either Dirichlet or Neumann. This leads to Theorem 1,
which states the regularity and well-posedness of Problem (4) in this smooth
case (∂Ω and Γ smooth and disjoint). This is the main result of this paper,
and, as far as we know, no complete proof was given before. We also consider
coefficients with lower regularity than it is usually assumed, which is needed to
treat the truly parametric case. (We are planning to address this question in a
future paper.)

We assume throughout this and the following section that we are dealing with
a single, non-parametric equation (not with a family), that is, that U is reduced
to a single point in this subsection. We also assume that µ = 1, to simplify the
notation.

We shall need the “broken” version of the usual Sobolev spaces to deal with
our interface problem. Recall the subdomains Ωk ⊂ Ω, 1 ≤ k ≤ K, we define:

Ĥm(Ω) := {v : Ω → R, v ∈ Hm(Ωk), ∀1 ≤ k ≤ K} (8)

Ŵm,∞(Ω) := {v : Ω → R, ∂αv ∈ L∞(Ωk), ∀1 ≤ k ≤ K, |α| ≤ m}.

For further reference we note that the definitions of these spaces imply that
the multiplication and differentiation maps Ŵm,∞(Ω)× Ĥm(Ω) → Ĥm(Ω) and
∂i : Ĥm(Ω) → Ĥm−1(Ω) are continuous.

One of the difficulties of dealing with interface problems is the more compli-
cated structure of the domains and ranges of our operators. When m = 0, we
define Dm = D0 = H1

D(Ω) = V and Rm = R0 = H−1
D (Ω) = V ∗. Then we define

P̃A in a weak sense using the bilinear form B introduced in Equation (5) (see
the discussion around Equation (2.12) in [10] for more details or the discussion
around Equation (20) in [11]). Assume now that m ≥ 1. We then define

Dm := Ĥm+1(Ω) ∩ {u = 0 on ∂DΩ} ∩ {u+ − u− = 0 on Γ} and

Rm := Ĥm−1(Ω) ⊕Hm−1/2(∂NΩ)⊕Hm−1/2(Γ ).

In particular, Dm = Ĥm+1(Ω) ∩H1
D(Ω). Let A = (aij , bi, c) ∈ Ŵm,∞(Ω)d

2+d+1

and PAu =
∑2

i,j=1 ∂i(a
ij∂ju) +

∑2
i=1 b

i∂iu + cu, as before. Then the family of

partial differential operators P̃A
m : Dm → Rm,

P̃A
mu =

(
PAu,∇A

ν u|∂NΩ, (∇A
ν u

+ −∇A
ν u

+)|Γ
)

(9)

is well defined. Note that the domain Dm and codomain Rm are independent of
y ∈ U , which justifies why we do not consider homogeneous Neumann boundary
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conditions. We are now ready to state and prove our main theorem. Let us denote

‖u‖Ĥm(Ω) :=
(∑K

k=1 ‖u‖Hm(Ωk)2

)1/2
and ‖v‖Ŵm,∞(Ω) :=

∑K
k=1 ‖v‖Wm,∞(Ωk)

the resulting natural norms on the spaces introduced in Equation (8).

Theorem 1. Let us assume that Ω ⊂ Rd is smooth and bounded, that the inter-
face Γ is smooth and does not intersect the boundary, and that to each compo-
nent of the boundary it is associated a single type of boundary conditions (either

Dirichlet or Neumann). Assume that A = (aij , bi, c) ∈ Ŵm,∞(Ω)d
2+d+1 and that

PA is strictly positive definite on H1
D(Ω), then P̃A

m : Dm → Rm is invertible.
Moreover, let ‖P−1‖ denote norm of the inverse of the map P : H1

D(Ω) →
H1

D(Ω)∗ =: H−1
D (Ω). Then there exists a constant C̃1 > 0 such that the solution

u of (4) satisfies

‖u‖Ĥm+1(Ω)+‖u‖H1(Ω) ≤ C̃1

(
‖f‖Ĥm−1(Ω)‖g‖Hm− 1

2 (∂NΩ)
+‖h‖

Hm− 1
2 (Γ )

)
, (10)

with the constant C̃1 = C̃1(m, ‖P−1‖, ‖A‖Ŵm,∞).

Proof. In the case of the pure Dirichlet boundary conditions for an equation and
without the explicit bounds in Equation (10), this lemma is a classical result,
which is proved using divided differences and the so called “Nirenberg’s trick”
(see [8,12]). Since we consider transmission problems and want the more explicit
bounds in the above Equation (10), let us now indicate the main steps to treat
the interface regularity following the classical proof and [13]. The boundary
conditions (i. e., regularity at the boundary) were dealt with in [13]. In all the
calculations below, all the constants C in this proof will be generic constants
that will depend only on the variables on which C̃1 depends (i. e., on the order
m, the norms ‖P−1‖ and ‖A‖Ŵm,∞(Ω)). We split the proof into several steps.

Step 1. We first use Proposition 1 to conclude that P : H1
D(Ω) → H1

D(Ω)∗ is
indeed invertible. This provides the needed estimate for m = 0 (in which case,
we recall, our problem (4) has to be interpreted in a weak sense).

Step 2. For m > 0 we can assume g = 0 and h = 0 by using the extension
theorem as in [13].

Step 3. We also notice that, in view of the invertibility of P for m = 0 and
since u ∈ H1

D(Ω), it suffices to prove

‖u‖Ĥm+1(Ω) ≤ C
(∑

k

‖f‖Hm−1(Ωk) + ‖u‖Ĥm(Ω)

)
. (11)

Indeed, the desired inequality (10) will follow from Equation (11) by induction
on m. Since Equation (11) holds for P if, and only if, it holds for λ+P , in order
to prove Equation (11), it is also enough to assume that λ+P is strictly positive
for some λ ∈ R. In particular, Equation (11) will continue to hold–with possibly
different constants–if we change the lower order terms of P .

Step 4. Let us assume that Ω = Rd with the interface given by Γ = {xd = 0}.
Let Ω1 = Rd

+ and Ω2 = Rd
− be the two halves into which Rd is divided (so

K = 2). Then we prove Equation (11) for these particular domains and for
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g = 0 and h = 0 by induction on m. As we have noticed, the Equation (11) is
true for m = 0, since the stronger relation (10) is true in this case. Thus, we
shall assume that Equation (11) has been proved for m and for smaller values
and we will prove it for m+ 1. That is, we want to prove

‖u‖Ĥm+2(Rd) ≤ C
(
‖f‖Ĥm(Rd) + ‖u‖Ĥm+1(Rd)

)
. (12)

To this end, let us first write

‖u‖Ĥm+2(Rd) ≤
d∑

j=1

‖∂ju‖Ĥm+1(Rd) + ‖u‖L2(Rd) . (13)

We then use our estimate (11) for m (using the induction hypothesis) applied
to the function ∂ju for j < d. This gives

‖∂ju‖Ĥm+1(Rd) ≤ ‖P∂ju‖Ĥm−1(Rd) ≤ ‖∂jf‖Ĥm−1(Rd) + ‖[P, ∂j ]u‖Ĥm−1(Rd)

≤ ‖f‖Ĥm(Rd) + C‖u‖Ĥm+1(Rd) (14)

since the commutator [P, ∂j ] = P∂j − ∂jP is an operator of order ≤ 2 whose
coefficients can be bounded in terms of ‖A‖Ŵm,∞(Ω). We now only need to

estimate ‖∂du‖Hm+1 , we do that on each half subspace.

‖∂du‖Ĥm+1(Rd) ≤
∑d

j=1 ‖∂j∂du‖Ĥm(Rd) + ‖∂du‖L2(Rd)

≤
∑d−1

j=1 ‖∂ju‖Ĥm+1(Rd) + ‖∂2du‖Ĥm(Rd) + ‖u‖Ĥ1(Rd). (15)

The right hand side of the above equation contains only terms that have already
been estimated in the desired way, except for ‖∂2du‖Hm . Since m ≥ 0, we can
use the relation Pu = f to estimate this term as follows. Let us write Pu =∑
∂i(aij∂ju)+

∑
bi∂iu+ cu. This gives add∂2du = f −

∑
(i,j) %=(d,d) a

ij∂i∂ju+Qu,

where Q is a first order differential operator. Next we notice that add is uniformly
bounded from below by the uniform strong positivity property (which implies
uniform strong ellipticity): (add)−1 ≤ r−1. Note that by Proposition 1, we have
‖P−1‖ ≤ r, and hence r−1 is an admissible constant. This gives ∂2du = (add)−1f−∑d−1

j=1 B
j∂ju +Q1u where Bj and Q1 are first order differential operators with

coefficients bounded by admissible constants, which then gives

‖∂2du‖Ĥm(Rd) ≤ C
(
‖f‖Ĥm(Rd) +

d−1∑

j=1

‖∂ju‖Ĥm+1(Rd) + ‖u‖Ĥm+1(Rd)

)
(16)

≤ C
(
‖f‖Ĥm(Rd) + ‖u‖Ĥm+1(Rd)

)

by Equation (14). Equation (15) and (16) then give

‖∂du‖Ĥm+1(Rd) ≤ C
(
‖f‖Ĥm(Rd) + ‖u‖Ĥm+1(Rd)

)
. (17)

Combining Equations (17) and (14) with Equation (13) gives then the desired
Equation (12) for m replaced with m+ 1.
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Step 5. We finally reduce to the case of a half-space or a full space using
a partition of unity as in the classical case, as follows. We choose a smooth
partition of unity (φj) on Ω consisting of functions with small supports. The
supports should be small enough so that if the support of φj intersects the
boundary of Ω or the interface Γ , then the boundary or the interface can be
straightened in a small neighborhood of the support of φj . We arrange that the
resulting operators are positive and we complete the proof as in [13].

See also [14,15].

4 Weighted Sobolev Spaces and Higher Regularity of
Non-parametric Solutions

We now assume d = 2, so Ω is a plane domain. We allow however Ω to be
piecewise smooth. We also consider coefficients with lower regularity than the
ones considered in [10]. This leads to Theorem 2, which will be then generalized
to families in a forthcoming paper, which will contain also full details for the
remaining results. We continue to assume that we are dealing with a single,
non-parametric equation and that µ = 1.

To formulate further assumptions on our problem and to state our results,
we shall need weighted Sobolev spaces, both of L2 and of L∞ type. Let V be
the set of singular points, where Q ∈ V if one of the following is satisfied: (1) it
is a vertex, (2) it is a point where the boundary condition changes type (from
Dirichlet to Neumann), (3) it is a point where the interface meets the boundary,
or (4) it is a non-smooth point on the interface of the subdomains Ωk. Let us
denote from now on by ρ : R2 → [0, 1] a continuous function that is smooth
outside the set V and is such that ρ(x) is equal to the distance from x ∈ R2 to V
when x is close to the singular set V . The function ρ will be called the smoothed
distance to the set of singular points. We can also assume ‖∇ρ‖ ≤ 1, which will
be convenient in later estimates, since it will reduce the number of constants (or
parameters) in our estimates. We first define the Babuška-Kondrat’ev spaces

Km
a (Ω) := {v : Ω → R, ρ|α|−a∂αv ∈ L2(Ω), ∀ |α| ≤ m} (18)

Wm,∞(Ω) := {v : Ω → R, ρ|α|∂αv ∈ L∞(Ω), ∀ |α| ≤ m}. (19)

We shall denote by ‖ · ‖Km
a (Ω) and ‖ · ‖Wm,∞(Ω) the resulting natural norms

on these spaces. We shall need also the “broken” version of these Babuška-
Kondrat’ev spaces for our interface problem. Recall the subdomains Ωk ⊂ Ω,
1 ≤ k ≤ K. In analogy with the smooth case, we then define: K̂m

a (Ω) := {v :
Ω → R, v ∈ Km

a (Ωk), ∀1 ≤ k ≤ K}, and Ŵm,∞(Ω) := {v : Ω → R, v ∈
Wm,∞(Ωk), ∀1 ≤ k ≤ K}. If V is empty (that is, if the domain Ω is smooth
and the interface is also smooth and does not touch the boundary), then we
set ρ ≡ 1 and our spaces reduce to the broken Sobolev spaces Ĥm(Ω) and
Ŵm,∞ introduced in the previous section, Equation (8). As in the smooth case,
the multiplication and differentiation maps Ŵm,∞(Ω) × K̂m

a (Ω) → K̂m
a (Ω) and

∂i : K̂m
a (Ω) → K̃m−1

a−1 (Ω) are continuous. Let S ⊂ ∂Ωk. Also as in the smooth
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case, we define the spaces Km+1/2
a+1/2 (S) as the restrictions to S of the functions

u ∈ Km+1
a+1 (Ωk). These spaces have intrinsic descriptions [1,11] similar to the

usual Babuška-Kondrat’ev spaces. Note that no “hat” is needed for the boundary

version of the spaces K̂. Also Km+1/2
a+1/2 (S1 ∪ S2) = Km+1/2

a+1/2 (S1) ⊕ Km+1/2
a+1/2 (S2), if

S1 and S2 are disjoint.
We need to consider the subset Vs of V consisting of Neumann-Neumann

corners (i. e., corners where two edges endowed with Neumann boundary con-
ditions meet) and non-smooth points of the interface, which can be described
as Vs := V ! {Q ∈ V , Q ∈ ∂DΩ}. Note that, if a point Q at the intersection
of the interface Γ and the boundary falls on an edge with Neumann boundary
conditions, then Q is also included in Vs. In order to deal with the singularities
arising at the points in Vs (which behave differently than the singularities at the
other points of V), we also need to augment our weighted Sobolev spaces with
a suitable finite-dimensional space. Namely, for each point Q ∈ Vs, we choose a
function χQ ∈ C∞(Ω̄) that is constant equal to 1 in a neighborhood of Q. We
can choose these functions to have disjoint supports. Let Ws be the linear span
of the functions χQ for any Q ∈ Vs. We now define the domains and ranges of
our operators. Assume first that m ≥ 1.

Da,m := (K̂m+1
a+1 (Ω) +Ws) ∩ {u = 0 on ∂DΩ} ∩ {u+ − u− = 0 on Γ}

Ra,m := K̂m−1
a−1 (Ω)⊕Km−1/2

a−1/2 (∂NΩ)⊕Km−1/2
a−1/2 (Γ ).

Let us observe that, by definition, the functions in Ws satisfy the interface and
boundary conditions (so Ws ⊂ V := H1

D(Ω)). Moreover, for a ≥ 0, we have

Da,m = (K̂m+1
a+1 (Ω) +Ws) ∩H1

D(Ω). Denote A = (aij , bi, c) ∈ Ŵm,∞(Ω)d
2+d+1,

d = 2, and PAu =
∑2

i,j=1 ∂i(a
ij∂ju) +

∑2
i=1 b

i∂iu + cu, as before. Then the

family of partial differential operators P̃A
a,m : Da,m → Ra,m

P̃A
a,mu =

(
Pu,∇A

ν u|∂NΩ, (∇A
ν u

+ −∇A
ν u

+)|Γ
)

(20)

is well defined and the induced map Ŵm,∞(Ω)(d
2+d+1) 2 A = (aij , bi, c) →

PA
a,m ∈ L(Da,m,Ra,m) is continuous (recall that d = 2). The continuity of this

map motivates the use of the spaces Ŵm,∞(Ω).
When m = 0, we define

Da,m = Da,0 = K1
a+1(Ω) ∩ {u = 0 on ∂DΩ} +Ws

Ra,m = Ra,0 = (K1
−a+1(Ω) ∩ {u = 0 on ∂DΩ})∗,

where in the last equation the dual is defined as the dual with pivot L2(Ω). Then
we define P̃a,0 in a weak sense using the bilinear form B introduced in Equation
(5), as in the smooth case.

Recall the constant 0 < r in the definition of the uniform strict positivity
(Definition 1) and Proposition 1. We now state the main result of this section.
Recall that U is reduced to a point in this section.
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Theorem 2. Assume that A = (aij , bi, c) ∈ Ŵm,∞(Ω)d
2+d+1, d = 2, and that

PA is strictly positive definite on V = H1
D(Ω). Then there exists 0 < η such

that for any m ∈ N0 and for any 0 < a < η, the map P̃A
a,m : Da,m → Ra,m is

boundedly invertible and ‖(P̃A
a,m)−1‖ ≤ C̃, where C̃ = C̃(m, r, a, ‖A‖Ŵm,∞(Ω))

depends only on the indicated variables.

A more typical formulation is given in the following corollary.

Corollary 1. We use the notation and the assumptions of Theorem 2. If f ∈
K̂m−1

a−1 (Ω), g ∈ Km−1/2
a−1/2 (∂NΩ), and h ∈ Km−1/2

a−1/2 (Γ ), then the solution u ∈ H1
D(Ω)

of Problem (4) can be written u = ur + us, with ur ∈ K̂m+1
a+1 (Ω) and u ∈ Ws,

such that

‖ur‖K̂m+1
a+1

+ ‖us‖L2 ≤ C̃
(
‖f‖K̂m−1

a−1
+ ‖g‖Km−1/2

a−1/2
(∂NΩ)

+ ‖h‖Km−1/2
a−1/2

(Γ )

)
,

with C̃ as in Theorem 2.

5 Applications

We keep the settings and notations of the previous section. In particular, d = 2
and we are dealing with equations (not systems). One can proceed as in [6,7,13] to
obtain hm-quasi-optimal rates of convergence for the Galerkin un approximations
of u. Namely, under suitable additional regularity in the y ∈ U variable one can
construct a sequence of finite dimensional subspaces Sn ⊂ L2(U ;V ) such that

‖u− un‖L2(U ;V ) ≤ C dim(Sn)
−m/2‖f‖Hm−1(Ω). (21)

This is based on a holomorphic regularity in U and on the approximation prop-
erties in [10]. We now state a uniform shift theorem for our families of boundary
value/transmission problems.

Let us denote by Ck
b (U ;Z) the space of k-times boundedly differentiable func-

tions defined on U with values in the Banach space Z. By Cωb (U ;Z) we shall
denote the space of analytic functions with bounded derivatives defined on U
with values in the Banach space Z. Recall that r is the constant appearing in
the definition of uniform positivity of the family (Py)y∈U . Theorem 2 extends to
families of boundary value problems as in [13] as follows. Let us denote by η(y)
the best constant appearing in Theorem 2 for P = Py and η = infy∈U η(y).

Theorem 3. Let m ∈ N0 and k0 ∈ N0 ∪ {∞, ω} be fixed. Assume that A =

(aij , bi, c) ∈ Ck0
b (U ; Ŵm,∞(Ω))d

2+d+1, d = 2, and that the family PA
y is uni-

formly positive definite. Then η = infy∈U η(y) > 0. Let f ∈ Ck0
b (U ; K̂m−1

a−1 (Ω)),

g ∈ Ck0
b (U ;Km−1/2

a−1/2 (∂NΩ)), h ∈ Ck0
b (U ;Km−1/2

a−1/2 (Γ )), and 0 < a < η. Then the so-

lution u of our family of boundary value problems (4) satisfies u ∈ Ck0
b (U ;Da,m)).

Moreover, for each finite k ≤ k0, there exists a constant Ca,m > 0 such that

‖u‖Ck
b (U ;Da,m) ≤ Ca,m

(
‖f‖Ck

b (U ;K̂m−1
a−1 (Ω))

+‖g‖Ck
b (U ;Km−1/2

a−1/2
(∂NΩ))

+ ‖h‖Ck
b (U ;Km−1/2

a−1/2
(Γ ))

)
.
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The constant Ca,m depends only on r, m, a, k, and the norms of the coefficients

aij , bi, c in Ck
b (U ; Ŵm,∞(Ω)), but not on f or g.
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