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In this paper we study the biharmonic equation with Navier boundary conditions in a polygonal domain.
In particular, we propose a method that effectively decouples the fourth-order problem as a system of
Poisson equations. Our method differs from the naive mixed method that leads to two Poisson problems
but only applies to convex domains; our decomposition involves a third Poisson equation to confine the
solution in the correct function space, and therefore can be used in both convex and nonconvex domains.
A C0 finite element algorithm is in turn proposed to solve the resulting system. In addition, we derive
optimal error estimates for the numerical solution on both quasi-uniform meshes and graded meshes.
Numerical test results are presented to justify the theoretical findings.
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1. Introduction

Let Ω ⊂ R
2 be a polygonal domain. Consider the biharmonic problem

Δ2u = f in Ω , u = 0 and Δu = 0 on ∂Ω . (1.1)
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1780 H. LI ET AL.

The boundary conditions in (1.1) are referred to as the homogeneous Navier boundary conditions
(Destuynder & Salaun, 1996; Rafetseder & Zulehner, 2018) that occur for example in the model for
the static loading of a pure hinged thin plate. Equation (1.1) is a fourth-order elliptic equation for which
a direct finite element approximation usually involves delicate construction of the finite element space
(Argyris et al., 1968; Brenner & Scott, 2002; Ciarlet Jr & He, 2003). An alternative approach is to
use a mixed formulation to decompose the high-order problem into a system of equations that may be
easier to solve. This approach is particularly appealing for the biharmonic problem (1.1) because the
Navier boundary condition allows one to obtain two Poisson equations that are completely decoupled,
which implies that a reasonable numerical solution should be achieved by merely applying a finite
element Poisson solver to the mixed formulation. However, it has been observed (Nazarov & Sweers,
2007a; Zhang & Zhang, 2008; Gerasimov et al., 2012; De Coster et al., 2019) that the performance of
this standard mixed method depends on the domain geometry. In a convex domain, the corresponding
numerical approximations converge to the solution of equation (1.1), although the convergence rate may
not be optimal. When the domain possesses reentrant corners, however, the result can be misleading:
this mixed finite element formulation produces numerical solutions that may be converging to a wrong
solution.

In this paper we propose a C0 finite element algorithm for solving the biharmonic problem (1.1)
and analyze its efficiency. In particular, we shall devise a modified mixed formulation to transform
equation (1.1) into a system of three Poisson equations. This work is based on the observation that
the aforementioned standard mixed formulation (decomposition into two Poisson equations) in fact
defines a weak solution in a space larger than that for equation (1.1). This mismatch in function spaces
does not affect the solution in a convex domain, while in a nonconvex domain it allows additional
singular functions and therefore results in a solution different from that of equation (1.1) (known as
the Sapongyan paradox; Nazarov & Plamenevsky, 1994; Zhang & Zhang, 2008). Our modified mixed
formulation ensures that the associated solution is identical to the solution of (1.1) in both convex and
nonconvex domains. This is accomplished by introducing an additional intermediate Poisson problem
that confines the solution in the correct space.

To solve the proposed mixed formulation we present a numerical algorithm based on the piecewise
linear C0 finite element. Moreover, we derive the error analysis on the finite element approximations
for both the auxiliary function w (see (2.11)) and the solution u. For the auxiliary function w, the error
in the H1 norm is standard and has a convergence rate h

π
ω on a quasi-uniform mesh, where ω is the

interior angle of the reentrant corner; its L2 error estimate can be obtained using a duality argument.
For the solution u, the error in the H1 norm is bounded by (i) the interpolation error of the solution
u in H1, (ii) the L2 error for the auxiliary function w and (iii) the L2 error for the solution ξ of the
additional intermediate Poisson problem. We shall show that the proposed algorithm has the optimal H1

convergence rate for the solution u on quasi-uniform meshes.
In addition, we present regularity estimates for the proposed system in a class of Kondratiev-

type weighted spaces. Based on these regularity results, we in turn propose graded mesh refinement
algorithms, such that the associated finite element methods recover the optimal convergence rate in the
energy norm for the auxiliary function w even when w is singular. For clarity in the exposition, we adopt
the linear C0 finite element method in this paper with the assumption that the domain Ω has at most one
reentrant corner. The cases involving high-order finite elements and multiple reentrant corners will be
discussed in a forthcoming paper.

There is a rich literature on mixed finite element methods for the biharmonic problem, and
most existing works are focused on the Dirichlet (clamped) boundary condition (u = ∂nu = 0
on ∂Ω). For example, Davini & Pitacco (2000) studied a mixed method, and in Zulehner (2015)
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FEM FOR BIHARMONIC EQUATION 1781

preconditioning techniques were investigated for the discrete system, both of which are based on
the Ciarlet–Raviart formulation (Ciarlet & Raviart, 1974) for solving biharmonic problems with a
clamped boundary condition. In addition, some other types of mixed variational formulations can
be found in Gallistl (2017), Sweers (2009) for the clamped biharmonic problem. Notice that it is
possible to extend the algorithm in Gallistl (2017) to solve equation (1.1). We also mention the
related works Blum et al. (1980), De Coster et al. (2019) and the references therein for general
regularity results for biharmonic problems, Bernardi et al. (1992) for a mixed spectral element
method for the Navier–Stokes equations and Nazarov & Sweers (2007b) for Kirchhoff plate bending
problems. In particular, De Coster et al. (2019) studied the Saponzhyan–Babushka paradox of the
biharmonic problem with piecewise C2,1 boundaries connecting at corners, and an augmented solution
space is needed to correct the solution of the second-order system in the appropriate Sobolev-type
space.

The method proposed in this paper effectively decouples the biharmonic problem (1.1) into a system
of Poisson equations, whose solution is equivalent to that of the original problem in both convex
and nonconvex domains. The C0 finite element algorithm is simple, robust and effective in practical
computations for problem (1.1). Our method can be further applied to cases involving multiple reentrant
corners and high-order finite element approximations. Moreover, with suitable modifications, we expect
to extend this algorithm to some other high-order problems, such as a class of fourth-order problems
with low-order terms and sixth-order problems with similar boundary conditions. It is also reasonable to
explore the extension of this work to fourth-order problems with nonlinear operators or other boundary
conditions.

The rest of the paper is organized as follows. In Section 2, based on the general regularity theory
for second-order elliptic equations (Kondrat’ev, 1967; Moussaoui, 1985; Grisvard, 1992; Kozlov et al.,
1997, 2001), especially Nazarov & Svirs (2007a), we review the weak solutions of the biharmonic
problem (1.1) and the naive mixed formulation. In addition, we discuss the orthogonal space of the
image of the operator −Δ, which is one-dimensional, and identify a basis function in this space. Then
we propose a modified mixed formulation and show the equivalence of its solution to the original
biharmonic problem. In Section 3 we propose the finite element algorithm and obtain error estimates on
quasi-uniform meshes for both the solution u and the auxiliary function w. In Section 4 we introduce a
weighted Sobolev space and derive regularity estimates for the solution near the reentrant corner. Then
we present the graded mesh algorithm and provide optimal error estimates on graded meshes. We report
numerical test results in Section 5 to validate the theory.

Throughout the paper, the generic constant C > 0 in our estimates may be different at different
occurrences. It will depend on the computational domain, but not on the functions involved nor on the
mesh level in the finite element algorithms.

2. The biharmonic problem

2.1 Well-posedness of the solution

Denote by Hm(Ω), m ≥ 0 the Sobolev space that consists of functions whose ith derivatives are square
integrable for 0 ≤ i ≤ m. Let L2(Ω) := H0(Ω). Recall that H1

0(Ω) ⊂ H1(Ω) is the subspace consisting
of functions with zero trace on the boundary ∂Ω . We shall denote the norm ‖ · ‖L2(Ω) by ‖ · ‖ when
there is no ambiguity about the underlying domain. For s > 0, let s = m + t, where m ∈ Z≥0 and
0 < t < 1. Recall that for D ⊆ R

d, the fractional-order Sobolev space Hs(D) consists of distributions v
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1782 H. LI ET AL.

in D satisfying

‖v‖2
Hs(D) := ‖v‖2

Hm(D) +
∑

|α|=m

∫
D

∫
D

|∂αv(x) − ∂αv(y)|2
|x − y|d+2t

dx dy < ∞,

where α = (α1, . . . , αd) ∈ Z
d
≥0 is a multi-index such that ∂α = ∂

α1
x1 · · · ∂αd

xd and |α| = ∑d
i=1 αi. Let

H̃s(D) be the space of all v defined in D such that ṽ ∈ Hs(Rd), where ṽ is the extension of v by zero
outside D.

The following variational formulation for equation (1.1) can be obtained using integration by parts:

a(u, v) :=
∫

Ω

ΔuΔv dx =
∫

Ω

fv dx = (f , v) ∀ v ∈ H2(Ω) ∩ H1
0(Ω). (2.1)

For a function v ∈ H2(Ω) ∩ H1
0(Ω), applying the Poincaré-type inequality (Grisvard, 1992, Theorem

2.2.3) gives ‖Δv‖L2(Ω) ≥ C‖v‖H2(Ω). Then by the Lax–Milgram theorem, equation (2.1) defines a
unique weak solution u ∈ H2(Ω) ∩ H1

0(Ω) for any f in the dual space of H2(Ω) ∩ H1
0(Ω) (namely,

f ∈ (
H2(Ω) ∩ H1

0(Ω)
)∗). The regularity of the solution u depends on the given data f and the domain

geometry (Blum et al., 1980).

2.2 The naive mixed formulation

Intuitively, equation (1.1) can be decoupled into a system of two Poisson problems by introducing an
auxiliary function w such that{

−Δw = f in Ω ,

w = 0 on ∂Ω ,
and

{
−Δū = w in Ω ,

ū = 0 on ∂Ω ,
(2.2)

where (ū, w) ∈ H1
0(Ω) × H1

0(Ω). We refer to (2.2) as the naive mixed formulation. Note that numerical
solvers for the Poisson problems (2.2) are readily available, while numerical approximation of the
fourth-order problem (1.1) is generally a much harder task. The mixed weak formulation of (2.2) is
to find ū, w ∈ H1

0(Ω) such that

A(w, φ) =(f , φ) ∀φ ∈ H1
0(Ω), (2.3a)

A(ū, ψ) =(w, ψ) ∀ψ ∈ H1
0(Ω), (2.3b)

where

A(φ, ψ) =
∫

Ω

∇φ · ∇ψ dx.

Given f ∈ H−1(Ω) ⊂ (
H2(Ω) ∩ H1

0(Ω)
)∗, it is clear that the weak solutions ū, w are well defined by

(2.3) because they are solutions of decoupled Poisson problems (Evans, 1998). Since our goal is to solve
the biharmonic problem (1.1), an important question is whether the solution u in (2.1) and the solution
ū in (2.3) are the same.

Remark 2.1 For f ∈ H−1(Ω), existing results suggest that under appropriate conditions, the solution
ū of system (2.3) is equivalent to the solution u of equation (2.1) in the sense that

u = ū in H2(Ω) ∩ H1
0(Ω).
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FEM FOR BIHARMONIC EQUATION 1783

Fig. 1. Domain Ω containing a reentrant corner.

These conditions include (i) the domain Ω and the given data f being smooth, which can be verified by
the regularity of these equations up to the domain boundary (Gilbarg & Trudinger, 1983; Li & Nistor,
2009), (ii) the polygonal domain Ω being convex (Zhang & Zhang, 2008). It is however pointed out that
u is not always equivalent to ū when the polygonal domain Ω has reentrant corners, which is known
as the Sapongyan paradox (Nazarov & Plamenevsky, 1994; Zhang & Zhang, 2008). In this case, the
numerical solution for (2.3) does not converge to the solution of the biharmonic problem (1.1). In the
next subsection, we shall study the structure of the solution in the presence of a reentrant corner in order
to design effective numerical algorithms for equation (1.1).

2.3 Image of the Laplace operator and its orthogonal space

From now on we assume the given function f ∈ L2(Ω) in (1.1). In addition, assume that the polygonal
domain Ω has a reentrant corner associated with the vertex Q and the corresponding interior angle
ω ∈ (π , 2π). Without loss of generality, we set Q to be the origin. Let (r, θ ) be polar coordinates
centered at the vertex Q, such that ω is spanned by two half-lines θ = 0 and θ = ω. Given R > 0 we
identify a sector KR

ω ⊂ Ω with radius R as

KR
ω = {(r cos θ , r sin θ) ∈ Ω | 0 ≤ r ≤ R, 0 ≤ θ ≤ ω}.

A sketch drawing of the domain Ω is shown in Fig. 1.
The mapping −Δ : H2(Ω) ∩ H1

0(Ω) → L2(Ω) is injective and has a closed range (Grisvard,
1992). Denote by M the image of this mapping and by M⊥ its orthogonal complement. Then it follows
that M ⊕ M⊥ = L2(Ω). Therefore, if w ∈ M in (2.3), we have equivalent solutions u = ū in
H2(Ω) ∩ H1

0(Ω). When the domain Ω is convex, one has M = L2(Ω); namely, the solution of the
Poisson equation with Dirichlet boundary condition is always in H2(Ω) when f ∈ L2(Ω). Thus, in
a convex domain the condition w ∈ H1

0(Ω) ⊂ M holds, and therefore the solutions u and ū are
equivalent. However, if Ω contains reentrant corners, M is a strict subset of L2(Ω) and in general
w �∈ M. Consequently, the solution in (2.2) ū /∈ H2(Ω) and it is different from the solution of (1.1)
u ∈ H2(Ω) ∩ H1

0(Ω). Fortunately, the space M⊥ is finite-dimensional and it is possible to identify its
basis.

We first introduce an L2 function in domain Ω in the following way.

Definition 2.2 Given the parameters τ ∈ (0, 1) and R such that KR
ω ⊂ Ω , we define an L2 function

in Ω ,

ξ(r, θ ; τ , R) := s−(r, θ ; τ , R) + ζ(r, θ ; τ , R), (2.4)
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1784 H. LI ET AL.

where

s−(r, θ ; τ , R) =η(r; τ , R)r− π
ω sin

(π

ω
θ
)

∈ L2(Ω), (2.5)

with cut-off function η(r; τ , R) ∈ C∞(Ω) satisfying η(r; τ , R) = 1 for 0 ≤ r ≤ τR and η(r; τ , R) = 0
for r > R, and ζ ∈ H1

0(Ω) satisfies

− Δζ = Δs− in Ω , ζ = 0 on ∂Ω . (2.6)

From (2.5) we see that s− ∈ C∞(Ω \ Kδ
ω) for any δ > 0 and s− = 0 for (r cos θ , r sin θ) ∈ Ω \ KR

ω.
Moreover, Δs− = 0 if r < τR or r > R.

Remark 2.3 The function ξ and its variants have been used for solving the Poisson equation with
singularities. For example, using a fixed coefficient τ = 1

2 , ξ was utilized in Blum & Dobrowolski
(1981), Cai & Kim (2001), and another version of ξ without the cut-off function was analyzed in Lions
& Magenes (1972), Ciarlet & Raviart (1974). When solving the biharmonic problem (1.1), we shall see
in the next section that all these versions of ξ lead to similar finite element algorithms. However, the
value of τ can affect the value of s− in Algorithm 3.1, which will be elaborated on later.

Denote the ith side of ∂Ω by Γ̄i, where Γi is open. For the function ξ defined in (2.4), we introduce
the maximal extension of the Laplace operator in L2(Ω):

D(Δ, L2(Ω)) := {v ∈ L2(Ω) : Δv ∈ L2(Ω)}.

For a function v, let γiv be the restriction of v to Γi. Then the mapping

v �→ γiv

that is defined for v ∈ H2(Ω) has a unique continuous extension from D(Δ, L2(Ω)) into H̃− 1
2 (Γi)

(Grisvard, 1992, Theorem 1.5.2), where H̃− 1
2 (Γi) is the dual space of H̃

1
2 (Γi) that is defined at the

beginning of Section 2. Then we have the following properties of ξ .

Lemma 2.4 For a given η ∈ C∞(Ω) as defined in Definition 2.2, the function ξ ∈ D(Δ, L2(Ω)) is
uniquely defined and satisfies

− Δξ = 0 in Ω , ξ = 0 on ∂Ω . (2.7)

In addition, ξ depends on the domain Ω , but not on τ or R. Namely, for any τ1, τ2 and R1, R2 satisfying
0 < δ < min{τ1R1, τ2R2}, it follows that

ξ(r, θ) := ξ(r, θ ; τ1, R1) = ξ(r, θ ; τ2, R2). (2.8)

Proof. The condition in (2.7) follows from Grisvard (1992, Lemma 2.3.6 ). We proceed to prove (2.8).
For 0 < δ < min{τ1R1, τ2R2}, we have Kδ

ω ⊂ Kτ1R1
ω ∩ Kτ2R2

ω ⊂ Ω . By (2.5) we have

s−(r, θ ; τ1, R1) − s−(r, θ ; τ2, R2) = 0, (r, θ) ∈ Kδ
ω.
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FEM FOR BIHARMONIC EQUATION 1785

Recall that s−(r, θ ; τi, Ri) ∈ C∞(Ω \ Kδ
ω); then it follows that

s−(r, θ ; τ1, R1) − s−(r, θ ; τ2, R2) ∈ C∞(Ω).

Since ζ(r, θ ; τi, Ri) ∈ H1
0(Ω), we have

ξ̃ := ξ(r, θ ; τ1, R1) − ξ(r, θ ; τ2, R2)

= ζ(r, θ ; τ1, R1) − ζ(r, θ ; τ2, R2) + (
s−(r, θ ; τ1, R1) − s−(r, θ ; τ2, R2)

) ∈ H1
0(Ω).

From (2.7) we have

Δξ̃ = Δξ(r, θ ; τ1, R1) − Δξ(r, θ ; τ2, R2) = 0 in Ω , ξ̃ = 0 on ∂Ω .

By the Lax–Milgram theorem, we have ξ̃ = 0, and thus (2.8) holds. �
From now on we shall write ξ(r, θ) instead of ξ(r, θ ; τ , R), since it is independent of τ and R. We

also notice that ξ(r, θ) �≡ 0, because otherwise we have s− = −ζ ∈ H1
0(Ω), which contradicts the fact

that s− /∈ H1
0(Ω).

Remark 2.5 It is clear that ξ ∈ D(Δ, L2(Ω)) is an L2(Ω) solution of the boundary value problem (2.7).
It is interesting to note that different from the H1(Ω) solution, the L2(Ω) solution to problem (2.7) is
not unique. For example, there are at least two L2(Ω) solutions for (2.7), one is ξ = 0, which is also the
unique H1(Ω) solution, and the other is ξ �≡ 0 as defined in (2.4). Note that the boundary condition in

(2.7) is defined in the trace sense, namely ξ ∈ H̃− 1
2 (Γi) on each side.

Now we are ready to describe the subspace M⊥. For the dimension of M⊥, we have the following
results from Grisvard (1992, Theorem 2.3.7).

Lemma 2.6 The dimension of M⊥ is equal to the cardinality of the set {λk : 0 < λk < 1} for k ≥ 1,
namely

dim(M⊥) = card{λk : 0 < λk < 1},

with λ2
k being the eigenvalues of the one-dimensional problem

−∂θθφk = λ2
kφk in (0, ω), φ(0) = φ(ω) = 0.

For k ≥ 1, it is clear that when λk > 0,

λk = kπ

ω
, φk =

√
2

ω
sin

(
kπ

ω
θ

)
. (2.9)

Hence, for the domain Ω with one reentrant corner, M⊥ satisfies the following lemma.

Lemma 2.7 The dimension of M⊥ is dim(M⊥) = 1 and M⊥ = span{ξ(r, θ)}, where ξ(r, θ) is the L2

function defined in (2.4).
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1786 H. LI ET AL.

By Lemma 2.7, any w ∈ L2(Ω) can be uniquely expressed as

w = wM + cξ ,

where wM = w − cξ ∈ M and the coefficient

c = (w, ξ) − (wM, ξ)

‖ξ‖2 = (w, ξ)

‖ξ‖2 . (2.10)

2.4 The modified mixed formulation

Based on the discussion above, we propose a modified mixed formulation for (1.1),{
−Δw = f in Ω ,

w = 0 on ∂Ω ,
and

{
−Δũ = w − cξ in Ω ,

ũ = 0 on ∂Ω ,
(2.11)

where ξ is given in (2.4) and the coefficient c is shown in (2.10). The corresponding modified mixed
weak formulation for (2.11) is to find ũ, w ∈ H1

0(Ω) such that

A(w, φ) =(f , φ), (2.12a)

A(ũ, ψ) =(w − cξ , ψ), (2.12b)

for any φ, ψ ∈ H1
0(Ω).

Then we have the following result for the modified mixed formulation.

Theorem 2.8 Given f ∈ L2(Ω), let ũ be the solution of the modified mixed weak formulation (2.12)
and let u be the solution of the weak formulation (2.1). Then it follows that ũ ∈ H2(Ω) ∩ H1

0(Ω) and
u = ũ.

Proof. Since f ∈ L2(Ω) we have w ∈ H1
0(Ω) ⊂ L2(Ω). Thus it follows that w − cξ ∈ M, which

implies ũ ∈ H2(Ω) ∩ H1
0(Ω). Then (2.12b) becomes

− (Δũ, ψ) = (w − cξ , ψ) ∀ψ ∈ H1
0(Ω). (2.13)

Note Δũ ∈ L2(Ω). Then following the density argument, (2.13) leads to

−(Δũ, ψ) = (w − cξ , ψ) , ∀ψ ∈ L2(Ω).

Thus, for any φ ∈ H2(Ω) ∩ H1
0(Ω), we have Δφ ∈ L2(Ω) and therefore

(Δũ, Δφ) = (w − cξ , −Δφ) . (2.14)

Since ξ ∈ L2(Ω), Δξ = 0 ∈ L2(Ω), using Green’s theorem (Grisvard, 1992, Theorem 1.5.3) and (2.7),
we have that (ξ , Δφ) = 0. Then the right-hand side of (2.14) becomes

(w − cξ , −Δφ) = A(w, φ) + (cξ , Δφ) = A(w, φ) = (f , φ),
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FEM FOR BIHARMONIC EQUATION 1787

where the last equation is based on (2.12a). Hence we have obtained that ũ ∈ H2(Ω) ∩ H1
0(Ω) satisfies

(Δũ, Δφ) = (f , φ) ∀φ ∈ H2(Ω) ∩ H1
0(Ω).

This is the same equation as (2.1) that defines u. Consequently, ũ = u ∈ H2(Ω) ∩ H1
0(Ω) and we have

completed the proof. �
Therefore, by Theorem 2.8, the solution u of the biharmonic problem (1.1) satisfies{

−Δw = f in Ω ,

w = 0 on ∂Ω ,
and

{
−Δu = w − cξ in Ω ,

u = 0 on ∂Ω .
(2.15)

The corresponding weak formulation is to find u, w ∈ H1
0(Ω) such that for any φ, ψ ∈ H1

0(Ω),

A(w, φ) =(f , φ), (2.16a)

A(u, ψ) =(w − cξ , ψ), (2.16b)

where c is given in (2.10).
In addition, we have the following regularity result.

Lemma 2.9 Given f ∈ L2(Ω), for w, u in the modified mixed formulation (2.15), it follows that

‖w‖H1(Ω) ≤C‖f ‖, (2.17a)

‖u‖H2(Ω) ≤C‖f ‖. (2.17b)

Proof. Estimate (2.17a) is a direct consequence of the fact that the Laplace operator is an isomorphism
between H1

0(Ω) and H−1(Ω) and ‖f ‖H−1(Ω) ≤ C‖f ‖. By the Lax–Milgram theorem for (2.1), we have
that Δ is also an isomorphism from H2(Ω) ∩ H1

0(Ω) to its dual. Therefore, estimate (2.17b) follows
from this observation and Theorem 2.8.

�

3. The finite element method

In this section we propose a linear C0 finite element method solving the biharmonic problem (1.1). Then
we derive the finite element error analysis for the solution u to show that our method will achieve the
optimal convergence rate especially when the domain is nonconvex.

3.1 The finite element algorithm

Let Tn be a triangulation of Ω with shape-regular triangles and let Sn ⊂ H1
0(Ω) be the C0 Lagrange

finite element space associated with Tn,

Sn(T ) := {v ∈ C0(Ω) ∩ H1
0(Ω) : v|T ∈ P1 ∀ T ∈ Tn}, (3.1)

where P1 is the space of polynomials of degree no more than 1. Then we proceed to propose the finite
element algorithm.
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Algorithm 3.1 We define the finite element solution of the biharmonic problem (1.1) by utilizing the
decoupling in (2.16) as follows.

• Step 1. Find the finite element solution wn ∈ Sn of the Poisson equation

A(wn, φ) = (f , φ) ∀φ ∈ Sn. (3.2)

• Step 2. With s− defined in (2.5), we compute the finite element solution ζn ∈ Sn of the Poisson
equation

A(ζn, φ) = (�s−, φ) ∀φ ∈ Sn, (3.3)

and set ξn = ζn + s−.

• Step 3. Find the coefficient cn ∈ R such that∫
�

(wn − cnξn)ξn dx = 0,

or equivalently, we compute the coefficient

cn = (wn, ξn)

‖ξn‖2
= (wn, ζn) + (wn, s−)

‖s−‖2 + ‖ζn‖2 + 2(ζn, s−)
. (3.4)

• Step 4. Find the finite element solution un ∈ Sn of the Poisson equation

A(un, ψ) = (wn − cnξn, ψ) ∀ψ ∈ Sn. (3.5)

Remark 3.2 The function s− in (2.5) exists only in the presence of a reentrant corner. When the
domain is convex, we set s− = 0 and Algorithm 3.1 reduces to the naive mixed finite element algorithm
for equation (1.1). According to (3.3), ζn ∈ Sn, while ξn ∈ L2(Ω) but ξn �∈ Sn. In addition, the finite
element approximations in Algorithm 3.1 are well defined based on the Lax–Milgram theorem.

Remark 3.3 All the integrals in Algorithm 3.1 can be effectively approximated by quadrature rules
except for the term ‖s−‖2 = ∫

KR
ω
(s−)2 dx in (3.4), due to the lack of regularity in the integrand. Namely,

s− ∈ Hβ(KR
ω) with β < 1 − π

ω
. Only evaluating ‖s−‖2 by quadrature rules may destroy the convergence

rate of the proposed algorithm. In practice, we evaluate ‖s−‖2 in the following way:

‖s−‖2 =
∫

KR
ω

(s−)2 dx =
∫

KτR
ω

(s−)2 dx +
∫

KR
ω\KτR

ω

(s−)2 dx

=
∫ ω

0

(∫ τR

0
+

∫ R

τR

) (
η(r; τ , R)r− π

ω sin
(π

ω
θ
))2

r dr dθ

=
∫ ω

0

∫ τR

0
r1− 2π

ω sin2
(π

ω
θ
)

dr dθ +
∫ ω

0

∫ R

τR
η2(r; τ , R)r1− 2π

ω sin2
(π

ω
θ
)

dr dθ

=ω(τR)2− 2π
ω

4 − 4π
ω

+ ω

2

∫ R

τR
η2(r; τ , R)r1− 2π

ω dr,

(3.6)
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FEM FOR BIHARMONIC EQUATION 1789

where the one-dimensional definite integral in the last equation can be calculated directly or evaluated
by a quadrature rule in one dimension. The computational technique (3.6) is accurate, and at the same
time can significantly reduce the computational cost in evaluating the integral.

3.2 Optimal error estimates on quasi-uniform meshes

Suppose that the mesh Tn consists of quasi-uniform triangles with size h. Recall the interpolation error
estimate on Tn (Ciarlet Jr & He, 2003) for any v ∈ Hl(Ω), l > 1:

‖v − vI‖Hm(Ω) ≤ Chl−m‖v‖Hl(Ω), (3.7)

where m = 0, 1 and vI ∈ Sn represents the nodal interpolation of v. For the Poisson equations (2.6)
and (2.15) in the polygonal domain with a reentrant corner, given f ∈ L2(Ω), it is well known that
w, ζ ∈ Hα(Ω) with α < 1+ π

ω
(see e.g., Grisvard, 1985, 1992). Recall the finite element approximations

wn and ζn in (3.2) and (3.3), respectively. Due to the lack of regularity, the standard error estimate
(Ciarlet Jr & He, 2003) yields

‖w − wn‖H1(Ω) ≤ Chα−1‖w‖Hα(Ω), ‖ζ − ζn‖H1(Ω) ≤ Chα−1‖ζ‖Hα(Ω). (3.8)

Note that ξ − ξn = ζ − ζn ∈ Hα(Ω), and thus

‖ξ − ξn‖H1(Ω) ≤ Chα−1‖ζ‖Hα(Ω). (3.9)

In addition, we have the following L2 error analysis.

Lemma 3.4 Given wn and ξn in Algorithm 3.1, we have

‖w − wn‖ ≤ Ch2α−2‖w‖Hα(Ω), ‖ξ − ξn‖ ≤ Ch2α−2‖ζ‖Hα(Ω). (3.10)

Proof. We only prove the error estimate for w − wn, and the estimate for ξ − ξn(= ζ − ζn) can be
obtained similarly. Consider the Poisson problem

− Δv = g in Ω , v = 0 on ∂Ω , (3.11)

where g ∈ L2(Ω). By the Aubin–Nitsche lemma in Ciarlet Jr & He (2003, Theorem 3.2.4), we have

‖w − wn‖ ≤ C‖w − wn‖H1(Ω) sup
g �=0∈L2(Ω)

(
infφ∈Sn

‖v − φ‖H1(Ω)

‖g‖
)

. (3.12)

For α ∈ (
1, 1 + π

ω

) ⊂ (1, 2), the regularity result (Grisvard, 1985, 1992) gives ‖v‖Hα(Ω) ≤
Cα‖g‖Hα−2 ≤ C‖g‖. Then we have

inf
φ∈Sn

‖v − φ‖H1(Ω) ≤ ‖v − vI‖H1(Ω) ≤ Chα−1‖v‖Hα(Ω) ≤ Chα−1‖g‖. (3.13)

Combining the estimates in (3.13), (3.12) and (3.8), we have completed the proof. �
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1790 H. LI ET AL.

Next we carry out the error estimate for the finite element approximation un in (3.5).

Theorem 3.5 Let un ∈ Sn be the finite element approximation to (3.5), and u be the solution to the
biharmonic problem (2.1). Then it follows that

‖u − un‖H1(Ω) ≤ Ch.

Proof. For any φ ∈ Sn, based on (2.16b) and (3.5), we have

A(u, φ) =(w, φ) − c(ξ , φ),

A(un, φ) =(wn, φ) − cn(ξn, φ).

Taking the difference of the two equations above, we have

A(u − un, φ) =(w − wn, φ) + cn(ξn, φ) − c(ξ , φ)

=(w − wn, φ) + cn(ξn − ξ , φ) + (cn − c)(ξ , φ).
(3.14)

Let uI ∈ Sn be the nodal interpolation of u. Set ε = uI − u, e = uI − un and take φ = e in (3.14).
We have

A(e, e) = A(ε, e) + (w − wn, e) + cn(ξn − ξ , e) + (cn − c)(ξ , e).

Thus, we have

‖e‖2
H1(Ω)

≤ C
(‖ε‖H1(Ω) + ‖w − wn‖H−1(Ω) + |cn|‖ξn − ξ‖H−1(Ω) + |c − cn|‖ξ‖H−1(Ω)

) ‖e‖H1(Ω).

Using the triangle inequality and the inequality above we have

‖u − un‖H1(Ω) ≤ ‖e‖H1(Ω) + ‖ε‖H1(Ω)

≤ C
(‖ε‖H1(Ω) + ‖w − wn‖H−1(Ω) + |cn|‖ξn − ξ‖H−1(Ω) + |c − cn|‖ξ‖H−1(Ω)

)
≤ C

(‖ε‖H1(Ω) + ‖w − wn‖ + |cn|‖ξn − ξ‖ + |c − cn|‖ξ‖) . (3.15)

The last inequality is based on the fact that the H−1 norm of an L2 function is bounded by its L2 norm.
We shall estimate every term in (3.15). Recall the solution u ∈ H2(Ω). By the interpolation error
estimate (3.7),

‖ε‖H1(Ω) = ‖u − uI‖H1(Ω) ≤ Ch‖u‖H2(Ω). (3.16)

Recall the angle of the reentrant corner ω ∈ (π , 2π). Thus, choosing α = 3/2 < 1 + π
ω

in (3.10),
we have

‖w − wn‖ ≤ Ch, ‖ξ − ξn‖ ≤ Ch. (3.17)
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FEM FOR BIHARMONIC EQUATION 1791

To obtain the error estimate for the third term in (3.15), we still need to show that |cn| is uniformly
bounded. Recall that ξ �≡ 0 depends only on the domain Ω , and so is

‖ξ‖ > 0. (3.18)

Moreover, when h ≤ h0 := min{1, 2α−2
√ ‖ξ‖

2C‖ξ‖Hα(Ω)
}, it follows from (3.10) that

1

2
‖ξ‖ ≤ ‖ξn‖ ≤ 3

2
‖ξ‖. (3.19)

By setting φ = wn in (3.2) and applying the Poincaré inequality, we obtain

‖wn‖ ≤ C‖wn‖H1(Ω) ≤ C‖f ‖. (3.20)

By (3.4), (3.19) and (3.20), we have the uniform boundedness,

|cn| ≤ ‖wn‖
‖ξn‖

≤ C‖f ‖, (3.21)

where C is a constant depending on Ω . Subtracting (3.4) from (2.10) we obtain

c − cn = (w − wn, ξ)

‖ξ‖2
+ (ξ − ξn, wn)

‖ξn‖2
+ ‖ξn‖2 − ‖ξ‖2

‖ξ‖2‖ξn‖2
(wn, ξ).

By the uniform boundedness for terms in (3.18), (3.19), (3.20) and the estimates in (3.17), we have for
the last term in (3.15),

|c − cn|‖ξ‖ ≤ ‖w − wn‖ + (‖ξn‖ + 2‖ξ‖)‖wn‖
‖ξn‖2 ‖ξ − ξn‖ ≤ Ch. (3.22)

Then the proof is completed by plugging (3.16), (3.21), (3.22) and (3.17) into (3.15). �

Remark 3.6 The error estimate in Theorem 3.5 shows that the proposed finite element algorithm
(Algorithm 3.1) produces numerical solutions that converge to the solution of the biharmonic problem
(1.1) when the domain Ω is nonconvex. In the case that Ω is convex, Algorithm 3.1 reduces to the naive
mixed finite element algorithm for equation (1.1) that has proven to be effective (Zhang & Zhang, 2008).
Therefore, Algorithm 3.1 approximates the target equation in both convex and nonconvex domains. On
a quasi-uniform mesh, the convergence is first order (optimal) for u in the H1 norm (Theorem 3.5) and
suboptimal (3.8) for the auxiliary function w in the H1 norm. In Algorithm 3.1, one shall solve three
Poisson problems. Given the availability of fast Poisson solvers, Algorithm 3.1 is a relatively easy and
cost effective alternative to existing algorithms solving (1.1).

4. Optimal error estimates on graded meshes

The numerical approximations from Algorithm 3.1 are optimal for u but only sub-optimal for w. It
is largely due to the lack of regularity for w. Recall that for f ∈ L2(Ω), w is merely in Hα(Ω) for
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α < 1 + π
ω

. In this section we study system (2.16) in a class of weighted Sobolev spaces and in turn
propose graded triangulations that lead to numerical solutions converging at the optimal rate to both u
and w.

4.1 Regularity in weighted Sobolev spaces

We now introduce the Kondratiev-type weighted spaces for the analysis of system (2.16).

Definition 4.1 [Weighted Sobolev spaces] Recall that Q is the vertex at the reentrant corner. Let r(x)
be the distance from x to Q. For a ∈ R, m ≥ 0 and G ⊂ Ω , we define the weighted Sobolev space

Km
a (G) := {v, r|α|−a∂αv ∈ L2(G) ∀ |α| ≤ m},

where the multi-index α = (α1, α2) ∈ Z
2≥0, |α| = α1 + α2 and ∂α = ∂

α1
x ∂

α2
y . The Km

a (G) norm for v is
defined by

‖v‖Km
a (G) =

( ∑
|α|≤m

∫
G

|r|α|−a∂αv|2dx

) 1
2

.

Remark 4.2 According to Definition 4.1, in the region that is away from the reentrant corner, the
weighted space Km

a is equivalent to the Sobolev space Hm. In the neighborhood of Q, the space Km
a is

the same Kondratiev space (Kondrat’ev, 1967; Grisvard, 1985; Dauge, 1988). Recall the first equation in
(2.15) that defines w. In the Dirichlet Poisson problem, the reentrant corner can give rise to singularities
in w, such that w /∈ H2(Ω). It is the reason that the finite element approximation to w on a quasi-uniform
mesh is not optimal. The singularity in w is however local and concentrates in the neighborhood of Q.
Involving a proper weight function, the space Km

a may allow more singular functions and is an important
tool for analyzing corner singularities.

In the weighted Sobolev space we have the following regularity result for system (2.16).

Lemma 4.3 Assume a < π
ω

and f ∈ L2(Ω). Recall ζ in (2.6). Then it follows that

‖ζ‖K2
a+1(Ω) ≤ C‖Δs−‖.

In addition, recall w in (2.15). Then we have

‖w‖K2
a+1(Ω) ≤ C‖f ‖.

Proof. Since Δs−, f ∈ L2(Ω) ⊂ K0
a−1(Ω), the desired estimates follow by applying Li & Nicaise

(2018, Theorem 3.3) to equations (2.6) and (2.15). �

4.2 Graded meshes

We now present the construction of graded meshes to improve the convergence rate of the numerical
approximation from Algorithm 3.1.

Algorithm 4.4 [Graded refinements] Let T be a triangulation of � with shape-regular triangles.
Recall that Q is the vertex of � at the reentrant corner. It is clear that Q is also a vertex in the triangulation
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FEM FOR BIHARMONIC EQUATION 1793

Fig. 2. The new node on an edge pq (left – right): p �= Q and q �= Q (midpoint); p = Q (|pr| = κ|pq|, κ < 0.5).

Fig. 3. Refinement of a triangle �x0x1x2. First row: (left to right): the initial triangle and the midpoint refinement; second row:
two consecutive graded refinements toward x0 = Q, (κ < 0.5).

T . Let pq be an edge in the triangulation T with p and q as the endpoints. Then, in a graded refinement,
a new node r on pq is produced according to the following conditions:

1. (Neither p or q coincides with Q.) We choose r as the midpoint (|pr| = |qr|).
2. (p coincides with Q.) We choose r such that |pr| = κ|pq|, where κ ∈ (0, 0.5) is a parameter that

will be specified later. See Fig. 2 for example.

Then the graded refinement, denoted by κ(T ), proceeds as follows. For each triangle T ∈ T , a new
node is generated on each edge of as described above. Then T is decomposed into four small triangles
by connecting these new nodes (Fig. 3). Given an initial mesh T0 satisfying the condition above, the
associated family of graded meshes {Tn, n ≥ 0} is defined recursively Tn+1 = κ(Tn).

Given a grading parameter κ , Algorithm 4.4 produces smaller elements near Q for better approxima-
tion of a singular solution. It is an explicit construction of graded meshes based on recursive refinements.
See also Apel et al. (1996), Băcuţă et al. (2005), Krendl et al. (2016), Li & Nicaise (2018) and the
references therein for more discussions on the graded mesh. Note that after n refinements, the number
of triangles in the mesh Tn is O(4n).
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4.3 Optimal error estimates on graded meshes

In the rest of this section we shall show that with a proper selection of the grading parameter κ , the
proposed numerical solutions un and wn converge to the solutions u and w of (2.15) at the optimal rate
on graded meshes. Recall the finite element space Sn in (3.1) associated with the graded mesh Tn.

We first recall the following interpolation error estimates (Apel et al., 1996; Li & Nicaise, 2018) for
functions in the weighted space.

Lemma 4.5 Let 0 < a < π
ω

and choose the grading parameter κ = 2−1/a. Define h := 2−n. Then for
any v ∈ K2

a+1(Ω), it follows that

‖v − vI‖H1(Ω) ≤ Ch‖v‖K2
a+1(Ω),

where vI is the nodal interpolation of v associated with Tn.

Now we proceed to derive the optimal error estimates of w − wn and ξ − ξn on graded meshes.

Lemma 4.6 Let 0 < a < π
ω

and choose κ = 2−1/a. Then for the approximations wn and ξn defined in
(3.2) and (3.3), it follows that

‖w − wn‖H1(Ω) ≤ Ch‖w‖K2
a+1(Ω), ‖w − wn‖ ≤ Ch2‖w‖K2

a+1(Ω),

‖ξ − ξn‖H1(Ω) ≤ Ch‖ζ‖K2
a+1(Ω), ‖ξ − ξn‖ ≤ Ch2‖ζ‖K2

a+1(Ω),

where h := 2−n.

Proof. The H1 error estimates for w − wn and ζ − ζn follow from the standard H1 error estimates on
graded meshes (Apel et al., 1996). We only prove the L2 error estimates for w − wn and the estimates
for ζ − ζn will follow similarly. Applying the Aubin–Nitsche lemma to (3.11) again, we have

‖w − wn‖ ≤ C‖w − wn‖H1(Ω) sup
g �=0∈L2(Ω)

(
infφ∈Sn

‖v − φ‖H1(Ω)

‖g‖
)

. (4.1)

Based on the regularity estimate in Lemma 4.3, the function v in (3.11) satisfies

‖v‖K2
a+1(Ω) ≤ C‖g‖.

Together with Lemma 4.5, we have

inf
φ∈Sn

‖v − φ‖H1(Ω) ≤ ‖v − vI‖H1(Ω) ≤ Ch‖v‖K2
a+1(Ω) ≤ Ch‖g‖, (4.2)

where vI is the nodal interpolation of v associated with Tn. Plugging (4.2) into (4.1) leads to the desired
error estimate for ‖w − wn‖.

The H1 and L2 error estimates of ξ − ξn follow by the relationship ξ − ξn = ζ − ζn. �
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Remark 4.7 Note that the error estimates for w−wn, ζ −ζn follow from the standard H1 error estimate
on both uniform meshes (Ciarlet Jr & He, 2003) and graded meshes (Apel et al., 1996). However, the
H1 and L2 error estimates of ξ − ξn are obtained based on the relationship ξ − ξn = ζ − ζn.

We conclude this section with the H1 error estimate for the solution u of the biharmonic problem
(1.1) on graded meshes.

Theorem 4.8 Let Tn be the graded mesh with the grading parameter 0 < κ < 1
2 . Let un be the finite

element approximation to u that is defined in Algorithm 3.1. Then it follows that

‖u − un‖H1(Ω) ≤ Ch,

where h := 2−n.

Proof. Let uI be the nodal interpolation of u associated with Tn. Similar to the analysis in Theorem 3.5
on quasi-uniform meshes, we have

‖u − un‖H1(Ω) ≤ C

(
‖u − uI‖H1(Ω) + ‖w − wn‖ + ‖wn‖

‖ξn‖
‖ξn − ξ‖ + |c − cn|‖ξ‖H−1(Ω)

)
. (4.3)

For 0 < κ < 1
2 , the following interpolation error still holds:

‖u − uI‖H1(Ω) ≤ Ch‖u‖H2(Ω). (4.4)

Thus, the proof is completed by combining the estimates in (4.3), (4.4), (3.22) and the L2 error estimates
for w − wn and ξ − ξn in (3.10). �

Remark 4.9 According to Theorems 3.5 and 4.8, the numerical solution un in Algorithm 3.1
approximates the solution u of the biharmonic problem in the optimal H1 convergence rate on quasi-
uniform meshes and also on graded meshes defined in Algorithm 4.4. In addition, a proper graded mesh
can improve the effectiveness in approximating the auxiliary function w in (2.15). In particular, selecting
the grading parameter κ as in Lemma 4.6, the proposed finite element solution wn converges to w in both
H1 and L2 norms with the optimal rate on graded meshes. Nonetheless, the numerical approximations
un and wn from Algorithm 3.1 converge to u and w in both convex and nonconvex domains. The graded
mesh can improve the convergence rate but does not make divergent numerical solutions convergent.
We also point out that when high-order finite element methods are used in Algorithm 3.1, new graded
meshes are needed to recover the optimal H1 convergence rate for both u and w. We shall study these
cases in future works.

5. Numerical illustrations

In this section we present numerical test results to validate our theoretical predictions for the proposed
finite element method solving equation (1.1). Since the solutions u, w in (2.15) are unknown, we use the
numerical convergence rate

R = log2

|vj − vj−1|H1(Ω)

|vj+1 − vj|H1(Ω)

(5.1)
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Fig. 4. The square domain (Example 5.1): (a) the initial mesh; (b) the mesh after one refinement; (c): the solution u7 from
Algorithm 3.1; (d) |uR − u7|.

Table 1 H1 Convergence history of the P1 elements in
Example 5.1 on uniform meshes

j = 3 j = 4 j = 5 j = 6

R for uj 0.96 0.99 1.00 1.00
R for wj 0.96 0.99 1.00 1.00

as an indicator of the actual convergence rate. Here vj denotes the finite element solution on the mesh
Tj obtained after j refinements of the initial triangulation T0. It can be either uj or wj depending on the

underlying Poisson problem. In particular, suppose the actual convergence rate is ‖v−vj‖H1(Ω) = O(hβ)

for β > 0. Then for the P1 finite element method, the rate in (5.1) is a good approximation of the
exponent β as the level of refinements j increases (Li et al., 2010).

We shall use the solution of the C0 interior penalty discontinuous Galerkin (C0-IPDG) method
(Brenner, 2012) programmed in the software FEniCS (Alnæs et al., 2015) as a reference solution. More
specifically, we use the C0-IPDG method based on P2 polynomials with the penalty parameter η = 24.
The reference solution is computed on the mesh after seven mesh refinements of the given initial mesh
and is denoted by uR. Since the C0-IPDG method leads to numerical solutions converging to the solution
u regardless of the convexity of the domain, we can use uR as a good approximation of u.

Example 5.1 (A convex domain). We consider problem (1.1) with f = 10 in the square domain
Ω = (0, 2)2. Since all the vertices have angles less than π , Algorithm 3.1 coincides with the naive
mixed finite element method based on the formulations in (2.3).

We solve this problem using Algorithm 3.1 on uniform meshes obtained by midpoint refinements
with the initial mesh given in Fig. 4(a). The finite element solution u7 and the difference |uR − u7|
are shown in Figs 4(c) and 4(d), respectively. The convergence rates (5.1) for uj and wj on a sequence
of uniform meshes are shown in Table 1. We see that the solution of the mixed finite element method
converges to the solution of the biharmonic equation (1.1) and the optimal convergence rate (R = 1) is
achieved for both the numerical solution uj and the auxiliary finite element solution wj. This is consistent
with our expectation (Remark 2.1) for the problem in a convex domain.

Example 5.2 (A nonconvex domain). In this example, we investigate the convergence of Algorithm
3.1 by considering equation (1.1) with f = 1 in an L-shaped domain Ω = Ω0 \ Ω1 with Ω0 = (−2, 2)2
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Fig. 5. The L-shaped domain (Example 5.2): (a) the initial mesh; (b) the graded mesh after two refinements; (c) the solution uU
7

of the naive mixed method; (d) the difference |uR − uU
7 |; (e) the solution uA

7 from Algorithm 3.1; (f) the difference |uR − uA
7 |.

and Ω1 = (0, 2) × (−2, 0). We use the following cut-off function in the algorithm:

η(r; τ , R) =

⎧⎪⎨⎪⎩
0 if r ≥ R,
1 if r ≤ τR,
1
2 − 15

16

(
2r

R(1−τ)
− 1+τ

1−τ

)
+ 5

8

(
2r

R(1−τ)
− 1+τ

1−τ

)3 − 3
16

(
2r

R(1−τ)
− 1+τ

1−τ

)5
otherwise,

where R = 9
5 , τ = 1

8 .
In the first test, we solve equation (1.1) in the L-shaped domain using quasi-uniform meshes and

compare the performances of Algorithm 3.1 and the naive mixed finite element algorithm based on
formulation (2.3). On Tj we denote the numerical solutions from Algorithm 3.1 by uA

j and wA
j , and denote

the numerical solutions from the naive mixed finite element algorithm by uU
j and wU

j . The initial mesh

is shown in Fig. 5(a). In Table 2 we display the errors (uR −uU
j and uR −uA

j ) in the L∞ norm between the

finite element solutions and the reference solution uR. In addition, the differences |uR−uU
7 | and |uR−uA

7 |
are presented in Figs 5(d) and 5(f). From these results we see that the solution uA

j from Algorithm 3.1

converges to the actual solution, while the solution uU
j of the naive mixed finite element algorithm

does not converge to the solution of the biharmonic equation (1.1) as the meshes are refined. These
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Table 2 The L∞ error in the L-shaped domain on quasi-uniform meshes

j = 3 j = 4 j = 5 j = 6

‖uR − uU
j ‖L∞(Ω) 1.28014e−01 1.37318e−01 1.41309e−01 1.42525e−01

‖uR − uA
j ‖L∞(Ω) 1.58074e−02 7.84320e−03 3.20391e−03 1.20794e−03

Table 3 Numerical convergence rates R for uU
j and wU

j in the L-shaped domain

κ\j uU
j wU

j

j = 5 j = 6 j = 7 j = 8 j = 9 j = 5 j = 6 j = 7 j = 8 j = 9

κ = 0.1 0.95 0.98 0.99 1.00 1.00 0.95 0.98 0.99 1.00 1.00
κ = 0.2 0.96 0.99 1.00 1.00 1.00 0.96 0.99 0.99 1.00 1.00
κ = 0.3 0.97 0.98 0.99 0.99 0.99 0.96 0.98 0.99 0.99 0.99
κ = 0.4 0.94 0.94 0.94 0.93 0.93 0.94 0.95 0.95 0.94 0.94
κ = 0.5 0.86 0.82 0.78 0.75 0.72 0.87 0.84 0.80 0.77 0.74

observations are closely aligned with our theoretical predictions in Remark 3.6. Namely, Algorithm 3.1
gives rise to convergent numerical solutions in both convex and nonconvex domains, while the naive
mixed method is applicable only for convex domains.

For the naive mixed finite element method, although the solution uU
j does not converge to the

solution of (1.1), we notice that both uU
j and wU

j , j ≥ 0 are converging sequences. The numerical

convergence rate R (5.1) for uU
j and wU

j on a sequence of graded meshes (including quasi-uniform

meshes) is reported in Table 3. In the table we observe that uU
j and wU

j have similar convergence rates:
R < 1 on quasi-uniform meshes and on the graded meshes with κ = 0.4; and R = 1 on graded meshes
with κ ≤ 0.3. These results indicate that the naive mixed finite element solution uU

j converges to the

solution ū of (2.2) in H1(Ω). Recall however that ū �= u when the domain has reentrant corners.
In the last test, we examine the convergence rates of the finite element solution uA

j and the auxiliary

finite element solution wA
j from Algorithm 3.1 on a sequence of graded meshes (including quasi-uniform

meshes). The H1 convergence rates (5.1) for the finite element solutions uA
j and wA

j are reported in

Table 4. For uA
j , the optimal convergence rate (R = 1) is achieved on all meshes with κ ∈ (0, 0.5]. For

the auxiliary solution wA
j , we observe that the convergence rate is not optimal on quasi-uniform meshes

and on the graded meshes with κ = 0.4; and the optimal convergence rate R = 1 is obtained on graded
meshes when κ ≤ 0.3. These numerical results justify the theory (Theorems 3.5, 4.8 and Lemma 4.6)
developed early in this paper. Namely, the numerical solution uA

j converges to u at the optimal rate on

quasi-uniform meshes and on graded meshes, while wA
j will converge to w in the optimal rate when

κ < 2− ω
π = 2− 3

2 ≈ 0.354. For κ > 2− 3
2 (κ = 0.4, 0.5 in Table 4), wA

j shall converge to w at a

reduced rate due to the fact that w is singular near the reentrant corner (w /∈ H2(Ω) and w ∈ Hα(Ω) for
α < 1 + 2

3 ≈ 1.667 see; (3.8)).

Example 5.3 In this example we compare the CPU time and the memory usage of the proposed
finite element algorithm (Algorithm 3.1) with those of the C0-IPDG method programmed in FEniCS.
More specifically, the tests are based on these two algorithms/methods for biharmonic problems in
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Table 4 H1 convergence history in the L-shaped domain on graded meshes

κ\j uA
j wA

j

j = 5 j = 6 j = 7 j = 8 j = 9 j = 5 j = 6 j = 7 j = 8 j = 9

κ = 0.1 0.95 0.98 0.99 1.00 1.00 0.95 0.98 0.99 1.00 1.00
κ = 0.2 0.95 0.99 1.00 1.00 1.00 0.96 0.99 0.99 1.00 1.00
κ = 0.3 0.97 0.99 1.00 1.00 1.00 0.96 0.98 0.99 0.99 0.99
κ = 0.4 0.98 0.99 1.00 1.00 1.00 0.94 0.95 0.95 0.94 0.94
κ = 0.5 0.97 0.99 0.99 1.00 1.00 0.87 0.84 0.80 0.77 0.74

Table 5 The CPU time (in seconds) of Algorithm 3.1 and the C0-IPDG method in FEniCS. (‘—’
represents running out of memory)

method\j Example 5.1 Example 5.2

j = 5 j = 6 j = 7 j = 8 j = 9 j = 5 j = 6 j = 7 j = 8 j = 9

C0-IPDG 0.65 4.38 31.85 279.19 — 0.56 3.30 24.12 189.15 —
Algorithm 3.1 0.07 0.28 1.21 5.08 24.2 0.12 0.46 1.82 8.15 35.60

Table 6 The memory usage (in GB) of Algorithm 3.1 and the C0-IPDG method in FEniCS. (‘—’
represents running out of memory)

method\j Example 5.1 Example 5.2

j = 5 j = 6 j = 7 j = 8 j = 9 j = 5 j = 6 j = 7 j = 8 j = 9

C0-IPDG 0.14 0.34 1.28 5.74 — 0.12 0.25 0.91 4.04 —
Algorithm 3.1 <0.01 0.01 0.02 0.28 1.26 <0.01 <0.01 0.01 0.16 0.94

both Examples 5.1 and 5.2 on quasi-uniform meshes. The results of the CPU time (in seconds) of both
algorithms/methods are shown in Table 5. Here, the CPU time does not include the mesh generation
time since we assume they are the same. The results of the memory usage (in GB) are shown in Table 6.
In this example, all results are tested on Ubuntu 20.04 with 16 GB memory and Intel CoreTM i7-6600U
processors.

From Table 5 we find that given the same triangulation, the implementation of the proposed finite
element algorithm (Algorithm 3.1) can be much faster than that of the C0-IPDG method, due to the
availability of fast Poisson solvers. At the same time, Table 6 indicates that Algorithm 3.1 uses less
memory compared with the C0-IPDG method. These results demonstrate the efficacy of our algorithm
for solving the biharmonic problem (1.1).
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