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Meshfree methods (MMs) enjoy advantages in discretizing problem domains over mesh-
based methods. Extensive progress has been made in the development of the MMs in 
the last three decades. The commonly used MMs, such as the reproducing kernel particle 
methods (RKP), the moving least-square methods (MLS), and the meshless Petrov-Galerkin 
methods, have main difficulties in numerical integration and in imposing essential bound-
ary conditions (EBC). Motivated by conventional finite volume methods, we propose a 
meshfree finite volume method (MFVM), where the trial functions are constructed through 
the conventional RKP or MLS procedures, while the test functions are set to be piecewise
constants on Voronoi diagrams built on scattered particles. The proposed method possesses 
three typical merits: (1) the standard Gaussian rules are proven to produce optimal approx-
imation errors; (2) the EBC can be imposed directly on boundary particles; and (3) mass 
conservation is maintained locally due to its finite volume formulations. Inf-sup conditions 
for the MFVM are proven in a one-dimensional problem, and are demonstrated numeri-
cally using a generalized eigenvalue problem for higher dimensions. Numerical test results 
are reported to verify the theoretical findings.

© 2020 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

We have seen extensive study of meshfree methods (also referred to as meshless methods) in the last decades and 
many significant developments have been achieved. A meshfree method (MM) establishes approximation functions using 
scattered particles to reduce the heavy computing load associated with the mesh generation in mesh-based methods (e.g., 
the finite element method (FEM)). The MM has been successfully applied to many engineering problems, especially those 
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where the use of FEMs would require expensive remeshing of the domain, such as the problems with large deformations, 
crack propagation, impact dynamics, etc. We refer to [1,4,10,11,15,36,39] for various aspects on MMs. In this paper, we 
study the MM that is based on weak formulations and uses the shape functions that reproduce polynomials of degree k. 
Examples of such MMs include reproducing kernel particle methods (RKP) [30,39], moving least-square methods (MLS) [40], 
and meshless local Petrov-Galerkin methods (MLPG) [1–3].

It is well known that numerical integration and imposition of essential boundary conditions (EBC) lead to major difficul-
ties in the MM. The MM becomes quite time-consuming and may even fail to simulate the actual problem if these difficulties 
are not addressed properly. First, the shape functions of MM are often not piecewise polynomials, and the conventional 
Gaussian integration rules cause notable integration errors. Many novel ideas have been proposed to improve the accuracy 
of the numerical integration, including background mesh integration [11,21,28,44], nodal integration [9,16,14,15,23], par-
tition of unity quadrature [13], stress point integration [22,27], support integrations [6,44–46,38,43], and others [1,5,20]. 
However, the effect of the numerical integration on MMs has not been understood sufficiently well, and the theoretical 
analysis on the numerical integration is still in its early stages [5,6,44–46]. Second, the shape functions of MM do not sat-
isfy the so-called Kronecker property. Therefore, it can be very difficult to impose EBC in the MM. The efforts to address 
the EBC can be categorized into the following classes: coupling with FEMs [34,25,31] and modifying bilinear forms, such 
as the penalty method [4,10,49], the Lagrange multiplier method [4,11], the Nitsche’s method [4,25,29,33,41]. Various new 
approaches in this area can be found in [26,32,48]. The coupling with FEMs causes essential modifications of the current 
MM code framework, while modifying bilinear forms produces complicated bilinear forms and often introduces external 
parameters, such as penalty parameters and stability parameters, which are difficult to select in a unified approach. To the 
best of our knowledge, there has not been an MM that (1) uses the conventional Gaussian rules, (2) maintains the optimal 
convergence order O (hk) in the energy norm with numerical integration, and (3) imposes the EBC directly, where h is a 
discretization parameter.

We briefly analyze the difficulties before designing an MM that satisfies (1)–(3). An integration constraint condition was 
proposed in [6,45,46] as follows: 

ωi

∇p · ∇ψi dx +
 

ωi

�p ψi dx −
 

∂ωi

∂ p

∂n
ψi ds = 0, ∀ p ∈ Pk, (1.1)

where ψi is the shape function of the MM, Pk is the space of polynomials of degree k, 
ffl
ωi

and 
ffl
∂ωi

are the numerical 
integrations for 

´
ωi

and 
´
∂ωi

, respectively. It is noted that the equality (1.1) holds automatically because of the Green 
formula if the numerical integration in (1.1) is exact. Based on (1.1), an approximation error O (hk + ηhk−1) in the energy 
norm was proven in [6,45,46], where η is a constant representing the accuracy of the primary integration rule. After a 
detailed investigation on (1.1), we find that ψi in (1.1) is introduced as a test function rather than a trial function. The 
conventional Gaussian rules cannot make (1.1) hold because of the non-polynomial features of ψi . This is a major source 
of the integration errors in MMs. Meanwhile, the error O (hk + ηhk−1) cannot be reduced by increasing the degree of 
polynomials in (1.1). Note that the supports of ψi ’s are overlapping, and the integration errors caused by different ψi cannot 
be canceled. Finally, the reason that it is difficult to impose the EBC in the MM is that the supports of the test functions 
ψi ’s, associated with the particles inside the domains (not on their boundaries), do not vanish on the domain boundary. 
This yields nonconforming integration terms on the essential boundary, and consequently direct imposition of EBC based on 
the standard bilinear forms can lead to large conforming errors.

According to the analysis above, it is important to take both the numerical integration and the EBC into account when 
designing a new MM. In particular, we would like to have an MM such that its test functions ψi ’s (a) satisfy (1.1) when 
the conventional Gaussian rules are applied, (b) have non-overlapping supports, and (c) vanish on the domain boundary for 
those associated with the particles inside the domain. Motivated by the finite volume method (FVM) [7,35,12,17,47,37], we 
propose a meshfree finite volume method (MFVM) in this study. The trial functions are produced by the conventional MMs, 
such as the RKP [30,39] and MLS [40]. The test functions are designed based on a Voronoi diagram constructed through 
the particles. Specifically, let Di ’s be the sub-regions (control volumes associated with the particles) of the Voronoi diagram, 
as shown in Fig. 1. The test function ψi is chosen to be the indicator function 1Di that is 1 in Di and 0 outside Di . It 
is easy to show that such Di and ψi = 1Di satisfy (a)–(c) above. Indeed, it is shown theoretically and numerically in this 
paper that the MFVM with the test function ψi = 1Di satisfies (1)–(3). Namely, it produces the optimal convergence order 
O (hk) in the energy norm with the conventional Gaussian rules, and imposes the EBC directly at the nodes on the essential 
boundary. Moreover, as in the conventional FVM, the inclusion of the indicator function 1Di in the test space ensures the 
mass conservation in each control volume Di . It is clear that our MFVM is a Petrov-Galerkin method, like the conventional 
FVM. The inf-sup condition for the MFVM is proven in a one-dimensional problem, and a generalized eigenvalue problem 
is developed to numerically verify the inf-sup conditions in other dimensions. We stress that the Voronoi diagrams are 
essentially different from the FEM meshes that require certain conforming conditions, such as maximum angle or shape 
regular conditions [18]. The Voronoi diagrams can be established together with connectivity of the particles by mature 
algorithms [24]. The Voronoi diagrams were used in the MM to make nodal integration [16] as well as to propose virtual 
element methods [8] and natural element methods [42]. We mention that similar ideas were applied to fluid dynamics [19], 
as well as appeared in the MLPG 5 [1–3], where the supports of the test functions were overlapping and the EBCs were 
imposed by the penalty methods. Moreover, the optimal convergence with the numerical integration was not proven there.
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The paper is organized as follows. In Section 2, we introduce the model problem and describe the MFVM. The inf-sup 
conditions of the MFVM are studied in Section 3. The effect of numerical integration on the MFVM is analyzed in Section 4, 
where the conventional Gaussian rules are shown to ensure the MFVM to converge with the optimal order O (hk) in the 
energy norm. In Section 5, the direct imposition of EBC is presented for the MFVM, and the optimal convergence is proven 
theoretically. Numerical tests are presented in Section 6 to demonstrate efficiency of the proposed algorithm and to verify 
theoretical results. Concluding remarks are included in Section 7.

2. The model problem and the MFVM

Let D be a domain in Rd (1 ≤ d ≤ 3) and m ≥ 0 be an integer, and let 1 ≤ p ≤ +∞. We denote the usual Sobolev space 
as W m,p(D) with norm ‖ · ‖W m,p(D) and semi-norm | · |W m,p(D) . The space W m,p(D) will be represented by Hm(D) in the 
case p = 2 and Lp(D) when m = 0, respectively. We denote by Hm

0 (D) the set of all functions in Hm(D) having zero values 
at the boundary ∂ D . The polynomial space of degree k in Rd is denoted by Pk .

Let � ⊂ Rd be a bounded domain with a Lipschitz boundary � := ∂�. To better present the idea, we first consider a 
model problem with the Neumann boundary condition

−�u = f , in �

∇u · �n = g, on �, (2.1)

where �n is the unit outward normal vector to �, f ∈ L2(�), g ∈ L2(�), and the solution u to (2.1) is assumed to satisfy 
u ∈ W k+1,∞(�). The essential boundary conditions (EBC) will be addressed specifically in Section 5.

An equivalent variational formulation solving (2.1) is given by

Find u ∈ H1(�) such that B(u, v) = F (v), ∀ v ∈ H1(�), (2.2)

where

B(u, v) ≡
ˆ

�

∇u · ∇v dx, F (v) ≡
ˆ

�

f v dx +
ˆ

�

g v ds.

The approximation space in the MM
The meshfree methods (MMs), such as the reproducing kernel particle methods (RKP), the moving least-square methods 
(MLS), and the meshless local Petrov-Galerkin methods (MLPG), approximate the variational problem (2.2) using scattered 
particles in � instead of meshes in mesh-based methods (e.g., the FEM). Let Xh = {xi, i ∈ Nh} ⊂ �̄ be the set of particles, 
represented by a small discretization parameter h, where Nh is an index set. Let Uh = span{φi : i ∈ Nh} be a family of finite-
dimensional subspaces, where each φi is associated with a particle xi . The shape functions φi ’s are compactly supported, and 
denote ωi ≡ supp φi and hi ≡ diamωi . We divide Nh into two parts: N ′

h = {i ∈ Nh : xi ∈ �} and N ′′
h = Nh\N ′

h . The fundamental 
assumptions on Uh are as follows.

A1: We assume that the distribution of the particles is quasi-uniform, i.e., there exist positive constants C1 and C2, inde-
pendent of h and i, such that

C1 ≤ hi

h
≤ C2 and C1hd ≤ |ωi | ≤ C2hd, (2.3)

where |ωi| is the “area” of ωi in Rd .

A2: (Finitely overlapping) For i ∈ Nh , let Si ≡ { j ∈ Nh : ωi ∩ ω j �= ∅} and assume that there is a constant κ , independent of 
i, j, and h, such that

card Si ≤ κ, ∀ i ∈ Nh. (2.4)

A3: (Polynomials reproducing) The shape functions reproduce polynomials of degree k, i.e.,∑
i∈Nh

p(xi)φi(x) = p(x), ∀ p ∈ Pk and x ∈ �. (2.5)

A4: There exists a positive constant C , independent of i and h, such that

‖Dαφi‖L∞(ωi) ≤ Ch−|α|
i for |α| = 0,1, α is a multi-index. (2.6)
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Fig. 1. An example on Voronoi diagram: Di is the region associated with particle xi .

A5: There exist positive constants C1, C2, independent of h and i, such that for any i ∈ Nh ,

C1‖v‖2
L2(ωi)

≤ hd
i

∑
j∈Si

v2
j ≤ C2‖v‖2

L2(ωi)
, (2.7)

C1‖v‖2
L2(ωi∩�)

≤ hd−1
i

∑
j∈Si

v2
j ≤ C2‖v‖2

L2(ωi∩�)
, (2.8)

C1|v|2H1(ωi)
≤ hd−2

i

∑
j∈Si

(v j − vi)
2 ≤ C2|v|2H1(ωi)

, (2.9)

where v ∈ Uh is of the form v = ∑
i∈Nh

vi φi .

Remark 2.1. The subspace Uh that satisfies the assumptions A1 – A5 has been studied extensively. We refer to [4–6,46,30,40]
for details. The approximation properties of Uh are also well known in the literature. We present the following approxima-
tion property that will be employed in this paper, and its proof could be found in [4,30,40,46]. For u ∈ W k+1,∞(�), define 
the Uh-interpolant of u by Ihu as

Ihu :=
∑
i∈Ih

u(xi)φi .

Lemma 2.1. For any u ∈ W k+1,∞(�),

‖u − Ihu‖W l,∞(�) ≤ Chk+1−l|u|W k+1,∞(�), l = 0,1, · · · ,k + 1, (2.10)

where C is a constant independent of h and u.

�
A Galerkin meshfree method to discretize (2.2) is given by

Find ϑh ∈ Uh such that B(ϑh, vh) = F (vh), ∀ vh ∈ Uh. (2.11)

Using a standard Céa lemma and (2.10), we have

|u − ϑh|H1(�) ≤ C inf
vh∈Uh

|u − vh|H1(�) ≤ C |u − Ihu|H1(�) ≤ Chk|u|W k+1,∞(�).

A meshfree finite volume method
It is well known that the Galerkin meshfree methods (2.11) based on A1–A5 can be less effective due to numerical integra-
tion and imposition of the EBC (see Introduction). In what follows, we propose a meshfree finite volume method (MFVM) 
that maintains the mass conservation as the conventional FVMs, and also addresses the concerns in numerical integration 
and in the EBC.

Let Di, i ∈ Nh , be regions of the Voronoi diagram constructed from the particles Xh , where Di is associated with parti-
cle xi (see Fig. 1). Di is called a control volume with respect to xi . Define 1Di to be the indicator function on Di that is 1 in 
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Di and 0 outside Di , and Vh = span{1Di :, i ∈ Nh}. It is obvious that dim(Uh) = dim(Vh). Multiplying 1Di on both sides of
(2.1) and making integration by part yields

−
ˆ

∂ Di\�
∇u · �nids =

ˆ

Di

f (x)dx +
ˆ

∂ Di∩�

g(s)ds, ∀ i ∈ Nh, (2.12)

where �ni is the unit outward normal vector to the boundary of Di . According to (2.12), we define a bilinear form Ah on 
H1(�) × Vh

Ah(v,σh) :=
∑
i∈Nh

ci

⎛
⎜⎝−

ˆ

∂ Di\�
∇v · �nids

⎞
⎟⎠ , ∀ v ∈ H1(�) and ∀ σh =

∑
i∈Nh

ci1Di

and a linear functional Lh on Vh

Lh(σh) :=
∑
i∈Nh

ci

⎛
⎜⎝ˆ

Di

f (x)dx +
ˆ

∂ Di∩�

g(s)ds

⎞
⎟⎠ , ∀ σh =

∑
i∈Nh

ci1Di .

Hence, (2.12) becomes

Ah(u,σh) = L(σh), ∀ σh ∈ Vh. (2.13)

The MFVM to discretize (2.13) is defined as follows:

Find uh ∈ Uh such that Ah(uh,σh) = L(σh), ∀ σh ∈ Vh. (2.14)

We refer to Uh and Vh as the trial and test spaces of the MFVM, respectively. Note that the inclusion of indicator functions 
1Di on control volumes in the test space is to ensure the mass conservation on each control volume Di .

Recall dim(Uh) = dim(Vh). For simplicity, we define a one-to-one mapping which maps a trial function wh =∑
j∈Nh

w jφ j ∈ Uh to a test function w∗
h ∈ Vh by

w∗
h =

⎛
⎝∑

j∈Nh

w jφ j

⎞
⎠

∗
=

∑
j∈Nh

w j1D j ∈ Vh.

With this mapping, the MFVM (2.14) can be rewritten as a variational formulation on Uh as follows

Find uh ∈ Uh such that A∗
h(uh, wh) = L∗

h(wh), ∀ wh ∈ Uh, (2.15)

where A∗
h is a bilinear form on H1(�) × Uh , and L∗

h a linear functional on Uh , defined by

A∗
h(v, wh) := Ah(v, w∗

h) and L∗
h(wh) := Lh(w∗

h), ∀ v ∈ H1(�), wh ∈ Uh.

We next prove a continuity result for A∗
h .

Lemma 2.2. A∗
h is continuous on H2(�) × Uh, namely, there exists a constant C independent of h and i ∈ Nh such that

∣∣A∗
h(v, wh)

∣∣ ≤ C(|v|H1(�) + h|v|H2(�))|wh|H1(�), ∀ v ∈ H2(�), wh ∈ Uh. (2.16)

Proof. Let wh = ∑
i∈Ni

wiφi . Then

A∗
h(v, wh) =

∑
i∈Nh

wi

⎛
⎜⎝−

ˆ

∂ Di\�
∇v · �nids

⎞
⎟⎠ = 1

2

∑
i∈Nh

⎛
⎜⎝∑

j∈ S̆ i

(w j − wi)

ˆ

∂ Di, j

∇v · �ni, jds

⎞
⎟⎠ , (2.17)

where S̆ i = { j ∈ Nh : (∂ D j \ �) ∩ (∂ Di \ �) �= ∅}, ∂ Di, j = (∂ D j \ �) ∩ (∂ Di \ �), and �ni, j is a unit vector normal to ∂ Di, j and 
directed toward D j . Using the Cauchy-Schwarz inequality in (2.17) produces
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|A∗
h(v, wh)| ≤ 1

2

∑
i∈Nh

⎛
⎝∑

j∈ S̆ i

(w j − wi)
2

⎞
⎠

1/2
⎛
⎜⎝∑

j∈ S̆ i

( ˆ

∂ Di, j

∇v · �ni, jds
)2

⎞
⎟⎠

1/2

,

≤ C

⎛
⎝∑

i∈Nh

( ∑
j∈ S̆ i

(w j − wi)
2)

⎞
⎠

1/2
⎛
⎜⎝∑

i∈Nh

( ∑
j∈ S̆ i

hd−1
ˆ

∂ Di, j

|∇v · �ni, j|2ds
)⎞⎟⎠

1/2

,

≤ Ch1− d
2 |wh|H1(�)h

d−1
2

⎛
⎜⎝∑

i∈Nh

ˆ

∂ Di\�
|∇v · �ni |2ds

⎞
⎟⎠

1/2

,

where the last inequality is because of (2.9). Finally, according to the trace inequality, we have

|A∗
h(v, wh)| ≤ Ch

1
2 |wh|H1(�)

⎛
⎝1

h

∑
i∈Nh

(|v|2H1(Di)
+ h2|v|2H2(Di)

)⎞⎠
1/2

= C |wh|H1(�)(|v|H1(�) + h|v|H2(�)),

which is the desired result. �
It is noted that A∗

h is not symmetric on Uh . Thus, the inf-sup condition of bilinear form A∗
h in Uh is crucial for success 

of the MFVM. We formulate the inf-sup condition as an assumption for now and shall investigate it further in the next 
sections.

Assumption. (inf-sup condition) There exists a constant α > 0 independent of i and h such that for any vh ∈ Uh , there is 
wh ∈ Uh satisfying

A∗
h(vh, wh) ≥ α|vh|H1(�)|wh|H1(�). (2.18)

Remark 2.2. We will prove the inf-sup condition (2.18) of A∗
h for the one-dimensional case in the next section. For general 

cases, we will present a generalized eigenvalue approach to verify the inf-sup condition (2.18) numerically.

Theorem 2.1. Let u ∈ H2(�) be the solution to (2.1), and assume the bilinear form A∗
h satisfies the inf-sup condition (2.18) on Uh, then 

the MFVM scheme (2.15) (or (2.14)) has a unique solution uh satisfying

|u − uh|H1(�) ≤ C inf
wh∈Uh

(|u − wh|H1(�) + h|u − wh|H2(�)). (2.19)

Proof. For all vh ∈ Uh , we have

A∗
h(uh, vh) = L∗(vh) = A∗

h(u, vh), and A∗
h(u − uh, vh) = 0.

Therefore, by (2.18) and (2.16), we have

|uh − wh|H1(�) ≤ 1

α
sup

vh∈Uh

|A∗
h(uh − wh, vh)|

|vh|H1(�)

= 1

α
sup

vh∈Uh

|A∗
h(u − wh, vh)|
|vh|H1(�)

≤ C

α
(|u − wh|H1(�) + h|u − wh|H2(�)),

from which (2.19) follows immediately since |u − uh|H1(�) ≤ |u − wh|H1(�) + |uh − wh|H1(�) . �
Remark 2.3. The result (2.19) means that the MFVM solution reaches the optimal convergence under the assumption (2.18). 
We refer to [4,30,40] for the approximation properties of the trial space Uh .

Remark 2.4. The solution to (2.15) is unique up to a constant since we solve a pure Neumann problem (2.1). There are 
several conventional approaches to ensure a unique solution to (2.15), such as Lagrange multiplier and imposing zero value 
at a particular point in �, see [6] in detail. We use the latter in this paper for convenience to present the main idea. Let 
z0 ∈ � be fixed, and we solve (2.15) under a constraint uh(z0) = 0 to ensure a unique solution. This approach will be used 
for the pure Neumann problems in other sections without describing it specifically.
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3. The inf-sup condition

We prove the inf-sup condition (2.18) for a one-dimensional case. A generalized eigenvalue problem is proposed to 
numerically verify the inf-sup condition (2.18) in two- and three-dimensions.

Let � = (0, 1), and suppose N particles {xi : i = 1, · · · , N} with x1 = 0, xN = 1 are scattered in �̄. We assume that 
xi are quasi-uniformly distributed, and hi are set so that the shape function φi satisfies the assumption A1 − A5 with 
k = 1. It is clear that in this case the associated Voronoi diagram consists of sub-intervals [x̄i−1, ̄xi], i = 1, 2, · · · , N , where 
x̄i = 1

2 (xi + xi+1), i = 1, 2, · · · N − 1, and x̄0 = x1, ̄xN = xN . Therefore, the test space Vh is given by

Vh = span{1[x̄i−1,x̄i ] : i = 1,2, · · · , N}.
To simplify the presentation, we assume that the support diameter hi are chosen such that each x̄i is covered by the 
supports of two shape functions φi and φi+1. We mention that it is not a serious restriction since we are considering the 
linear polynomial reproducing ((2.5) with k = 1).

Proposition 3.1. Assume that the shape function φi ’s satisfy the assumptions A1 − A5 with k = 1, and each x̄i is covered by supports 
of two shape functions φi and φi+1 . Then there is constant C independent of h and i such that

A∗
h(uh, uh) ≥ C |uh|2H1(�)

, ∀ uh ∈ Uh. (3.1)

Proof. For uh = ∑N
i=1 ciφi ∈ Uh , we have

A∗
h(uh, uh) = −c1u′

h(x̄1) +
N−1∑
i=2

ci(u′
h(x̄i−1) − u′

h(x̄i)) + cN u′
h(x̄N−1) =

N−1∑
i=1

u′
h(x̄i)(ci+1 − ci). (3.2)

Since x̄i is covered by the supports of two shape functions φi and φi+1, we have

u′
h(x̄i) = ciφ

′
i(x̄i) + ci+1φ

′
i+1(x̄i) = φ′

i+1(x̄i)(ci+1 − ci). (3.3)

We obtain (3.3) due to the reproducing property (2.5) that gives

φi(x̄i) + φi+1(x̄i) = 1 and φ′
i(x̄i) + φ′

i+1(x̄i) = 0.

With (3.2) and (3.3), we have

A∗
h(uh, uh) =

N−1∑
i=1

φ′
i+1(x̄i)(ci+1 − ci)

2. (3.4)

The particles xi are quasi-uniformly distributed. Then there is a constant C independent of h and i such that |xi+1 − x̄i | ≥ Ch
(x̄i is the center of [xi, xi+1]), which yields that

C1
1

h
≤ φ′

j+1(x̄ j) ≤ C2
1

h
,

where C1, C2 are constants independent of h and i. Therefore, we have

A∗
h(uh, uh) ≥

N−1∑
i=1

C
1

h
(ci+1 − ci)

2 ≥ C |uh|2H1(�)
,

where the last inequality comes from (2.9). �
In fact, we have derived a stronger result (3.1) in a special one-dimensional case, which leads to the inf-sup condition 

(2.18) directly. The condition (3.1) is referred to as the coercivity of A∗
h . Meanwhile, the inf-sup condition (2.18) can be 

verified numerically for higher dimensions and higher degrees k of reproducing polynomials, as shown in the numerical 
experiments. We shall present a generalized eigenvalue problem to verify the inf-sup numerically in general situations.

To this end, we denote by A the stiffness matrix derived from (2.15). We also need the stiffness matrix B from the 
Galerkin method based on the bilinear form B(·, ·) on Uh (see (2.2)). It is noted that A is not symmetric, and B is symmetric. 
For arbitrary uh = ∑

i uiφi and vh = ∑
viφi in Uh , we denote by u = [ui] and v = [vi] the coefficient vectors of uh and vh . 

Therefore, the inf-sup condition (2.18) has the equivalent matrix-vector form

inf
u∈RN

sup
N

vT Au√
T

√
T

> α. (3.5)

v∈R u Bu v Bv
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Let w = B
1
2 v, we have from (3.5)

α < inf
u∈RN

sup
w∈RN

wT B− 1
2 Au√

uT Bu‖w‖ = inf
u∈RN

‖B− 1
2 Au‖√

uT Bu
= inf

u∈RN

√
uT AT B−1Au

uT Bu
, (3.6)

namely,

uT AT B−1Au > α2uT Bu, ∀ u ∈RN .

It is clear that α2 can be bounded below by the smallest eigenvalue λmin of a generalized eigenvalue problem

AT B−1Au = λBu. (3.7)

We refer to λI S := √
λmin as the inf-sup constant of the MFVM, which will be employed to verify the inf-sup conditions for 

the MFVM numerically when h is not very small. Numerical test results will be presented in Section 6.

4. Effect of numerical integration

Numerical integration plays an important role in effective implementation of meshless methods, largely due to the non-
polynomial features of the shape functions. In [6,45,46], a novel integration rule was developed where the integration 
formulations were required to satisfy the discrete Green formula (1.1); consequently, the approximation error in the energy 
norm was bounded by O (hk +ηhk−1), where η is a constant representing the accuracy of the primary integration rules. This 
error estimate is sub-optimal and the standard Gaussian rules do not satisfy (1.1) because of the non-polynomial features of 
ψi . Note that ψi is introduced in (1.1) as the test function rather than the trial function. Therefore, if the test function ψi is 
the piecewise constant 1Di , similar to the case in the MFVM, equation (1.1) will hold for the standard Gaussian rules. This, 
along with the disjoint supports of 1Di , enables us to improve the sub-optimal error estimate O (hk + ηhk−1) to an optimal 
estimate O (hk). The detailed analysis on the effect of numerical integration on the proposed MFVM will be carried out in 
this section.

We consider the proposed MFVM (2.15) and let uh = ∑
j∈Nh

c jφ j be its solution. Then we obtain a linear system from 
the discretized variational formulation (2.15)∑

j∈Nh

βi jc j = li, ∀ i ∈ Nh, (4.1)

where

βi j ≡ A∗
h(φ j, φi) = −

ˆ

∂ Di\�
∇φ j · �nids and li ≡ L∗(φi) =

ˆ

Di

f dx +
ˆ

∂ Di∩�

g(s)ds.

In practice, these integration terms are computed numerically as follows:

β̃i j ≡ −
 

∂ Di\�
∇φ j · �nids and l̃i ≡

 

Di

f dx +
 

∂ Di∩�

g(s)ds,

where 
ffl
∂ Di\� , 

ffl
Di

, 
ffl
∂ Di∩�

are the numerical integration in the stiffness matrix [β̃i j] and the load vector [l̃i], respectively. We 
in fact will solve a version of system (4.1) with numerical integration:∑

j∈Nh

β̃i jc j = l̃i, ∀ i ∈ Nh. (4.2)

To analyze the approximation error of solution to (4.2), we develop an equivalent operator form of (4.2). For any uh and wh

in Uh with expressions 
∑

j∈Nh
u jφ j and 

∑
i∈Nh

wiφi , respectively, we define

Ã∗
h(uh, wh) ≡

∑
i, j∈Nh

u jβ̃i j wi and L̃∗(wh) ≡
∑
i∈Nh

wil̃i, (4.3)

which are a bilinear form and a linear functional on Uh , respectively. Then the linear system (4.2) is equivalent to

Find ũh ∈ Uh such that Ã∗
h(ũh, wh) = L̃∗(wh), ∀ wh ∈ Uh. (4.4)

To establish the unique solvability of (4.4), we prove the inf-sup condition of bilinear form Ã∗
h on Uh . To this end, the 

following result will be used below, i.e., there exists a small positive constant τ , independent of h, i, and j, such that for 
each i, j ∈ Nh
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∣∣∣ ˆ

∂ Di\�
∇φ jds −

 

∂ Di\�
∇φ jds

∣∣∣ ≤ τ |∂ Di\�| ‖∇φi‖L∞(�i j), (4.5)

where τ is associated with accuracy of the integration rule 
ffl
∂ Di\� and decreases as the integration accuracy increases. The 

proof of (4.5) can be found out in [44,6].

Proposition 4.1. (inf-sup) There exists a constant α̃ independent of i and h such that for any vh ∈ Uh, there is a wh ∈ Uh satisfying

Ã∗
h(vh, wh) ≥ α̃|vh|H1(�)|wh|H1(�). (4.6)

Proof. According to the inf-sup condition (2.18) of A∗
h , for any vh ∈ Uh , there is a wh ∈ Uh satisfying

A∗
h(vh, wh) ≥ α|vh|H1(�)|wh|H1(�). (4.7)

We next estimate difference between A∗
h(vh, wh) and Ã∗

h(vh, wh). Let vh = ∑
i∈Ni

viφi and wh = ∑
i∈Ni

wiφi . Using the 
similar calculation with (2.17) and the Cauchy-Schwarz inequality, we have

∣∣∣A∗
h(vh, wh) − Ã∗

h(vh, wh)

∣∣∣ =
∣∣∣ ∑

i∈Nh

wi

⎛
⎜⎝[  

∂ Di\�
−

ˆ

∂ Di\�

]
∇vh · �nids

⎞
⎟⎠∣∣∣

=
∣∣∣1

2

∑
i∈Nh

⎛
⎜⎝∑

j∈ S̆ i

(w j − wi)
([ ˆ

∂ Di, j

−
 

∂ Di, j

]
∇vh · �ni, jds

)⎞
⎟⎠∣∣∣ (4.8)

≤ 1

2

⎛
⎝∑

i∈Nh

∑
j∈ S̆ i

(w j − wi)
2

⎞
⎠

1/2
⎛
⎜⎝∑

i∈Nh

∑
j∈ S̆ i

([ ˆ

∂ Di, j

−
 

∂ Di, j

]
∇vh · �ni, jds

)2

⎞
⎟⎠

1/2

=: 1

2
I1 × I2.

It is proven in Lemma 2.2

I1 ≤ Ch1− d
2 |wh|H1(�). (4.9)

We next estimate I2. For any i ∈ Nh and j ∈ S̆ i , we have

∣∣∣[ ˆ

∂ Di, j

−
 

∂ Di, j

]
∇vh · �ni, jds

∣∣∣2 =

∣∣∣∣∣∣∣
[ ˆ

∂ Di, j

−
 

∂ Di, j

]∑
l∈Si

(vl − vi)∇φl · �ni, jds

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
∑
l∈Si

(vl − vi)
[ ˆ

∂ Di, j

−
 

∂ Di, j

]
∇φl · �ni, jds

∣∣∣∣∣∣∣
2

≤
⎛
⎝∑

l∈Si

(vl − vi)
2

⎞
⎠

⎛
⎜⎝∑

l∈Si

⎛
⎜⎝[ ˆ

∂ Di, j

∇φlds −
 

∂ Di, j

∇φlds
]
· �ni, j

⎞
⎟⎠

2⎞
⎟⎠

≤ Ch2−d|vh|2H1(ωi)
(Card Si)τ

2|∂ Di \ �|2‖∇φi‖2
L∞(�i j)

≤ Ch2−d|vh|2H1(ωi)
κτ 2h2d−2h−2, (4.10)

where we use (2.9), (4.5), (2.4), and (2.6) to get the last two inequalities. Then, using (4.10) in (4.8) and noting Card S̆ i ≤
Card Si ≤ κ , we get

I2 ≤
⎛
⎝C

∑
i∈Nh

(Card S̆ i)κτ 2hd−2|vh|2H1(ωi)

⎞
⎠

1/2

≤ Cκτh
d
2 −1

⎛
⎝∑

i∈Nh

|vh|2H1(ωi)

⎞
⎠

1/2

≤ Cκτhd− 1
2 |vh|H1(�).

Employing the estimates about I2 and I1 (4.9) in (4.8) yields
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∣∣∣A∗
h(vh, wh) − Ã∗

h(vh, wh)

∣∣∣ ≤ Cτ |vh|H1(�)|wh|H1(�).

Finally, Ã∗
h(vh, wh) ≥ A∗

h(vh, wh) −
∣∣∣A∗

h(vh, wh) − Ã∗
h(vh, wh)

∣∣∣ ≥ (α − Cτ )|vh|H1(�)|wh|H1(�) . We get the desired result by 
letting α̃ = α − Cτ , which is large than 0 for small τ (τ decreases as the integration accuracy increases). �

With the inf-sup condition (4.6), the variational problem (4.4), perturbed by numerical integration, can be solved 
uniquely. We next analyze the optimal approximation errors of ũh .

Theorem 4.1. Let u and ũh be the solutions to (2.1) and (4.4), respectively. Suppose u ∈ W k+1,∞(�) and f ∈ W k,∞(�). Assume 
that for any i ∈ Nh the numerical integration rules 

ffl
∂ Di, j

, j ∈ S̆ i and 
ffl

Di
are exact for polynomials of degree k − 1 on ∂ Di, j and Di , 

respectively. Assume for any i ∈ N ′
h, 
ffl

Di∩�
is exact for polynomials of degree k −1 on Di ∩�. Then there exists a constant C independent 

of h and i such that

|u − ũh|H1(�) ≤ Chk|u|W k+1,∞(�) + Chk| f |W k,∞(�). (4.11)

Proof. Let Ihu be the Uh-interpolant of u. We first present a Strang lemma as follows:

|ũh − Ihu|H1(�) ≤ C |u − Ihu|H1(�) + C sup
wh∈Uh

|A∗
h(Ihu, wh) − Ã∗

h(Ihu, wh) + L∗
h(wh) − L̃∗

h(wh)|
|wh|H1(�)

, (4.12)

which can be proven in similar ways as in [6], and therefore we omit detailed calculations here. The second term in the 
right hand side of (4.12) is referred to as the conforming error of the numerical integration.

For a function v ∈ W k+1,∞(�), the Taylor polynomial of degree k of u evaluated at xi is denoted by

T k
i v(x) =

∑
|α|≤k

1

α! Dα v(xi)(x − xi)
α.

A standard error estimate is known as follows:

|v − T k
i v|W l,∞(Di)

≤ Chk+1−l|v|W k+1,∞(�), l = 0,1, · · · ,k + 1. (4.13)

According to (2.10) we have

‖Ihu‖W k+1,∞(�) ≤ ‖u‖W k+1,∞(�) + ‖u − Ihu‖W k+1,∞(�) ≤ C |u|W k+1,∞(�). (4.14)

Letting wh = ∑
i∈Nh

wiφi and using the same calculation as (2.17), we have

|A∗
h(Ihu, wh) − Ã∗

h(Ihu, wh)| = 1

2

∑
i∈Nh

∣∣∣∣∣∣∣
∑
j∈ S̆ i

(w j − wi)
[ ˆ

∂ Di, j

−
 

∂ Di, j

]
∇Ihu · �ni, jds

∣∣∣∣∣∣∣ , (4.15)

where �ni, j is a unit vector normal to ∂ Di, j and directed toward D j (2.17). Since the integration rule 
ffl
∂ Di, j

integrates the 
polynomials of k − 1 exactly, we have∣∣∣∣∣∣∣

[ ˆ

∂ Di, j

−
 

∂ Di, j

]
∇Ihu · �ni, jds

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
[ ˆ

∂ Di, j

−
 

∂ Di, j

]
∇(

Ihu − T k
i Ihu

) · �ni, jds

∣∣∣∣∣∣∣
≤ Chk+d−1|u|W k+1,∞(�),

where the last inequality comes from (4.13), (4.14), and a fact |∂ Di, j | ≤ Chd−1. Using this estimate and (2.9) in (4.15), we 
have

|A∗
h(Ihu, wh) − Ã∗

h(Ihu, wh)| ≤ Chk+d−1|u|W k+1,∞(�)

∑
i∈Nh

⎛
⎝∑

j∈ S̆ i

(w j − wi)
2

⎞
⎠

1/2

≤ Chk+d−1|u|W k+1,∞(�)

⎛
⎝∑

i∈Nh

( ∑
j∈ S̆ i

(w j − wi)
2)

⎞
⎠

1/2 ⎛
⎝∑

i∈Nh

1

⎞
⎠

1/2

≤ Chk+d−1h
2−d

2 |u| k+1,∞ |wh|H1(�)h
− d

2 = Chk|u| k+1,∞ |wh|H1(�). (4.16)
W (�) W (�)



108 H. Li, Q. Zhang / Applied Numerical Mathematics 153 (2020) 98–113
Fig. 2. An illustration on numerical integration for k = 1, 2: one-point Gaussian rule (◦) on each side of the sub-region is sufficient to produce the optimal 
convergence rate.

Next, it can be shown that

L∗
h(wh) − L̃∗

h(wh) =
∑
i∈Nh

wi
[ˆ

Di

−
 

Di

]
f (x)dx +

∑
i∈N ′

h

wi
[ ˆ

Di∩�

−
 

Di∩�

]
g(s)ds. (4.17)

Similarly,∣∣∣∣∣∣∣
[ˆ

Di

−
 

Di

]
f (x)dx

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
[ˆ

Di

−
 

Di

](
f (x) − T k−1

i f (x)
)
dx

∣∣∣∣∣∣∣ ≤ Chk+d| f |W k,∞(�)

and ∣∣∣∣∣∣∣
[ ˆ

Di∩�

−
 

Di∩�

]
g(s)ds

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
[ ˆ

Di∩�

−
 

Di∩�

](
g(s) − T k−1

i g(s)
)
ds

∣∣∣∣∣∣∣
≤ Chk+d−1|g|W k,∞(�) ≤ Chk+d−1|u|W k+1,∞(�).

Using these two estimates, (2.7), and (2.8) in (4.17), we have

|L∗
h(wh) − L̃∗

h(wh)| ≤ Chk+d| f |W k,∞(�)

( ∑
i∈Nh

w2
i

)1/2( ∑
i∈Nh

1
)1/2

+Chk+d−1|u|W k+1,∞(�)

( ∑
i∈N ′

h

w2
i

)1/2( ∑
i∈Nh

1
)1/2

≤ Chk+d| f |W k,∞(�)h
− d

2 ‖wh‖L2(�)h
− d

2 + Chk+d−1|u|W k+1,∞(�)h
− d−1

2 ‖wh‖L2(�)h
− d−1

2 . (4.18)

Remember that we impose the condition wh(z0) = 0, ∀ wh ∈ Uh to ensure a unique solution to the pure Neumann problem 
in Remark 2.4. Then according to the Poincaré inequality and the trace inequality, we have

‖wh‖L2(�)≤C |wh|H1(�)
and ‖wh‖L2(�) ≤ ‖wh‖H1(�) ≤ |wh|H1(�).

Based on this, (4.18), (4.16), (4.12), and (2.19), we get

|u − ũh|H1(�) ≤ |u − Ihu|H1(�) + |ũh − Ihu|H1(�) ≤ Chk|u|W k+1,∞(�) + Chk| f |W k,∞(�),

which proves the estimate (4.11). �
Remark 4.1. The optimal convergence rate O (hk) in the energy norm is derived in Theorem 4.1 for the proposed MFVM 
with numerical integration. We will also test the convergence rate (4.11) numerically in the next section. The numerical 
integration rules in Theorem 4.1 are easy to implement. For example, we consider the two-dimensional problem with 
k = 1, 2. In this case, the one-point Gaussian rule on ∂ Di, j (exact for linear polynomials on ∂ Di, j ) is sufficient to achieve the 
optimal error estimate. See Fig. 2. The complexity in the numerical integration is almost the same as the nodal integration 
[9,16], and the computing cost is much cheaper than other integration rules in the MM.
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5. Direct imposition of the EBC

In this section, we emphasize on the treatment of the EBC in the proposed MFVM. We will prove that the EBC can 
be imposed directly on the boundary particles. It will also be demonstrated that the Kronecker property of the shape 
functions φi may not be necessary for the meshfree particle methods. We consider the model problem (2.1) with an essential 
boundary condition

−�u = f , in �

u = u0, on �. (5.1)

For convenience, we divide Nh into two parts: N ′
h = {i ∈ Nh : xi ∈ �} and N ′′

h = Nh\N ′
h . Namely, the particles xi ∈ N ′

h and 
xi ∈ N ′′

h are located on the boundary � and inside �, respectively. Denote

U ′′
h = span{φ j : j ∈ N ′′

h } and U ′
h = span{φ j : j ∈ N ′

h}.
For any v ∈ H2(�), we define

I ′′
h v :=

∑
i∈N ′′

h

v(xi)φi and I ′
h v :=

∑
i∈N ′

h

v(xi)φi,

which are the interpolants of v in U ′′
h and U ′

h , respectively. For any i ∈ N ′′
h , multiplying two sides of (5.1) by 1Di and using 

the integration by parts, we obtain

−
ˆ

∂ Di

∇u · �nids =
ˆ

Di

f (x)dx, ∀ i ∈ N ′′
h . (5.2)

For any v ′′
h = ∑

i∈N ′′
h

ciφi ∈ U ′′
h , denote

F ∗
h (v ′′

h) :=
∑
i∈N ′′

h

ci

⎛
⎜⎝ˆ

Di

f (x)dx

⎞
⎟⎠ .

Then (5.2) is equivalent to

A∗
h(u, v ′′

h) = F ∗
h (v ′′

h), ∀ v ′′
h =

∑
i∈N ′′

h

ciφi ∈ U ′′
h , (5.3)

where A∗
h was defined in (2.15).

To discretize (5.3), we consider a discrete variational formulation as follows:

Find I ′
hu0 + u′′

h with u′′
h ∈ U ′′

h , such that A∗
h(I ′

hu0 + u′′
h, v ′′

h) = F ∗
h (v ′′

h), ∀ v ′′
h ∈ U ′′

h . (5.4)

Obviously, the formulation (5.4) is the same as

Find u′′
h ∈ U ′′

h , such that A∗
h(u′′

h, v ′′
h) = F ∗

h (v ′′
h) − A∗

h(I
′
hu0, v ′′

h), ∀ v ′′
h ∈ U ′′

h . (5.5)

The inf-sup condition of the bilinear form A∗
h(·, ·) on U ′′

h can be established using the same way in Section 3. This ensures 
the unique solvability of (5.5) or (5.4). According to (5.3) and (5.4), we have

A∗
h(u − I ′

hu0 − u′′
h, v ′′

h) = 0, ∀ v ′′
h ∈ U ′′

h . (5.6)

Then, using the equation (5.6) and the similar argument as in Theorem 2.1, we have

|u − I ′
hu0 − u′′

h |H1(�) ≤ C inf
wh∈U ′′

h

(|u − I ′
hu0 − w ′′

h |H1(�) + h|u − I ′
hu0 − w ′′

h |H2(�)). (5.7)

Therefore, letting w ′′
h = I ′′

h u in (5.7) and noting the EBC u = u0 on �, we have

|u − I ′
hu0 − u′′

h |H1(�) ≤ C |u − I ′
hu0 − I ′′

h u|H1(�) + h|u − I ′
hu0 − I ′′

h u|H2(�))

= C(|u − Ihu|H1(�) + h|u − Ihu|H2(�)) ≤ Chk‖u‖W k+1,∞(�), (5.8)

where the last equality is due to the interpolation error estimate (2.10).
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Remark 5.1. Clearly, the estimate (5.8) shows that u is approximated by I ′
hu0 + u′′

h with the optimal convergence order. 
I ′

hu0 + u′′
h is solved from the discrete variational problem (5.4). It is important to note that I ′

hu0 is the interpolant of u
based on the particles on the boundary �, which is given according to the EBC u = u0 on �. This implies that the EBC 
is imposed directly on the boundary particles in the MFVM, even though the trial shape functions φi ’s do not satisfy the 
Kronecker property.

In many MMs, there exist the test functions ψi , associated with the interior particles xi, i ∈ N ′′
h , whose supports may 

intersect with the boundary. Multiplying two sides of (5.1) by such ψi and making the integration by part generate thatˆ

ωi

∇u · ∇ψi dx −
ˆ

ωi∩�

∂u

∂n
ψi ds =

ˆ

ωi

f ψi dx, ∀ p ∈ Pk. (5.9)

Comparing (5.9) with (5.2), we note that there is a nonconforming term 
´
ωi∩�

∂u
∂n ψids in (5.9), where ∂u

∂n is unknown on �. 
This creates the difficulties in directly imposing EBC in the MMs. Thus, various special treatments were proposed to manage 
the conforming errors, such as penalty techniques. In the proposed MFVM, the supports of test functions ψi = 1Di , i ∈ N ′′

h
do not intersect with the boundary �, and the EBC can be enforced directly, as demonstrated in (5.4) and (5.8).

6. Numerical tests

The numerical results are reported to verify the theoretical results in Sections 4 and 5. We only consider the EBC (5.1) to 
demonstrate that the proposed MFVM can address the numerical integration and the imposition of the EBC simultaneously.

For comparison, we also present the numerical results of the conventional MM (2.11) where both the trial and the test 
spaces are Uh . We use the numerical integration rules for the MFVM that satisfy the conditions in Theorem 4.1. Namely, ffl
∂ Di, j

, j ∈ S̆ i and 
ffl

Di
are exact for polynomials of degree k − 1 on ∂ Di, j and Di , respectively; and 

ffl
Di∩�

is exact for poly-

nomials of degree k − 1 on Di ∩ �. Therefore, we use one-point Gaussian rules on 
ffl
∂ Di, j

and 
ffl

Di
, respectively, since we 

consider the cases k = 1, 2, see Remark 4.1. We use a background integration scheme for the conventional MM. Specifically, 
we use 5-point and 5×5 Gaussian rules on each background portion for one-dimensional and two-dimensional problems, 
respectively.

The EBC will be imposed directly on the boundary nodes for both the MFVM and the MM. The optimal convergence rate 
of the MFVM with the direct imposition of EBC was proven in Section 5. There are various approaches to enforce the EBC in 
the conventional MM, such as the Lagrange multiplier, the penalty methods, and coupling with the FEM. We do not present 
these methods since we would like to show that it is feasible for the MFVM to impose the EBC directly without special 
treatments.

We will also test the inf-sup constant λI S defined below (3.7) in Section 3 and compare the relative errors of the MFVM 
and the MM as follows:

E E := |u − uN |H1(�)

|u|H1(�)

,

where uN is an MFVM or MM solution.
We first test a one-dimensional problem. Let � = (0, 1) and � = {0, 1}, then the model problem with the EBC is

−u′′ = f (x) in �, and u(0) = u0(0), u(1) = u0(1). (6.1)

We assume that u(x) = e5x is the exact solution, and the f (x) and u0(x) are calculated through equation (6.1) using u. 
Let {xi : i = 1, · · · , N} with x1 = 0, xN = 1 be the particles in �̄, and each xi is associated with a weight function wi(x) :=
w̃(

x−xi
ri

), where w̃ is a cubic spline reference function as follows:

w̃(x) =

⎧⎪⎨
⎪⎩

2
3 − 4x2 + 4|x|3, |x| ≤ 1

2
4
3 − 4|x| + 4x2 − 4

3 |x|3, 1
2 < |x| ≤ 1

0, |x| > 1

, (6.2)

and ri controls the support of wi . The trial function space Uh = {φi : i = 1, 2, · · · , N} is constructed according to xi and wi

using the standard MLS or RKP procedures. These shape functions satisfy the polynomial reproducing property as follows:

N∑
i=1

xl
iφi(x) = xl, l = 0,1, · · · ,k.

In the numerical experiments we only consider the cases k = 1, 2 that are most frequently applied in practice. The associated 
Voronoi diagram consists of [x̄i−1, ̄xi], i = 1, 2, · · · , N , where x̄i = 1

2 (xi + xi+1), i = 1, 2, · · · N − 1, and x̄0 = x1, ̄xN = xN . 
Therefore, the test space Vh is given by
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Fig. 3. The inf-sup constant λI S with respect to h = 1
N−1 with N = 2i+2 + 1, i = 1, 2, · · · , 8 for one dimensional uniformly distributed (UD) and perturbed 

(PD) particles.

Fig. 4. The relative errors EE with respect to h = 1
N−1 with N = 2i+2 + 1, i = 1, 2, · · · , 8 for the one-dimensional uniformly distributed (UD) (left) and 

perturbed (PD) (right) particles.

Vh = span{1[x̄i−1,x̄i ] : i = 1,2, · · · , N}.
Two particle distributions are considered as follows:

• uniform distribution (UD): xi = i−1
N−1 and ri = Rh, i = 1, 2, · · · , N , where h := 1

N−1 and R is a constant independent of h
and i;

• perturbed distribution (PD): xi = i−1
N−1 + 0.1hεi, i = 2, · · · , N − 1, x1 = 0, xN = 1, and ri = Rh, where εi is a random 

number produced from an uniform distribution on [−0.5, 0.5].

The inf-sup constant λI S and the relative errors (EE) of the MFVM and the MM for k = 1, 2 are presented in Fig. 3 and 
Fig. 4. We take R = 1.8 for k = 1 and R = 2.2 for k = 2 in the tests. We also examined different values of R and attained 
similar results. It can be seen in Fig. 3 that for both the uniform and perturbed particle distributions, the inf-sup constants 
have lower bounds as h becomes small. This verifies the inf-sup conditions (2.18) and (4.6). The approximation errors (EE) 
in the energy norm decrease with the optimal rate O (hk), k = 1, 2, as predicted in Theorem 4.1. The direct imposition of the 
EBC causes serious errors in the MM, especially for k = 2; while it works very well for the MFVM, as analyzed in Section 5. 
See Fig. 4.

We next present a two-dimensional numerical experiment. Let � = (0, 1) × (0, 1) and � = ∂�. Assume u(x) = e2ξ+η is 
the exact solution, where x = (ξ, η) is the Cartesian coordinates in R2. Then the model problem (5.1) with the EBC is

−�u = −5e2ξ+η in �
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Fig. 5. The inf-sup constant λI S (left) and the relative errors EE (right) with respect to h = 1
N−1 with N = 2i+2 + 1, i = 1, 2, · · · , 5 for two-dimensional 

uniformly distributed particles.

u(x) = e2ξ+η on �.

We consider the particles {xij = (ξi, η j), i, j = 1, 2, · · · , N} on �, where ξi = i−1
N−1 , η j = j−1

N−1 , and the weight functions 
wij = wi(ξ)w j(η). The trial function space Uh = {φi j : i, j = 1, 2, · · · , N} is constructed according to xij and wij using the 
standard MLS or RKP procedures. These shape functions satisfy the polynomial reproducing property as follows:

N∑
i, j=1

xβ

i jφi j(x) = xβ, ∀ x ∈ � and |β| = 0,1, · · · ,k. (6.3)

The associated Voronoi diagram consists of [ξ̄i−1, ̄ξi] ×[η̄i−1, η̄i], i, j = 1, 2, · · · , N , where ξ̄i = 1
2 (ξi + ξi+1), i = 1, 2, · · · N −1, 

and ξ̄0 = ξ1, ̄ξN = ξN , and η̄ j = 1
2 (η j + ξ j+1), j = 1, 2, · · · N − 1, and η̄0 = η1, η̄N = ηN Therefore, the test space Vh is given 

by

Vh = span{1[ξ̄i−1,ξ̄i ]×[η̄i−1,η̄i ] : i = 1,2, · · · , N}.
The one-point Gaussian rule is used in the MFVM for the cases k = 1, 2; while 5 × 5-Gaussian rules are employed on each 
background portion [ξi−1, ξi] × [η j−1, η j] for the MM. The inf-sup constants λI S and the EEs of the MFVM and the MM for 
k = 1, 2 are presented in Fig. 5. Similar to the one-dimensional results, the inf-sup constants have the lower bounds as h
decreases, and the inf-sup conditions (2.18) and (4.6) are verified. The optimal approximation errors (EE) O (hk), k = 1, 2, are 
shown in Fig. 5 (right) to verify the result in Theorem 4.1. The direct imposition of the EBC is applied successfully in the 
MFVM, as analyzed in Section 5.

7. Conclusion

The MFVM proposed in this paper simultaneously addressed the main difficulties in the MM, the numerical integration 
and imposition of the EBC. The standard Gaussian rules were proven to produce the optimal approximation errors O (hk), 
and the EBC can be imposed directly on the boundary nodes. The inf-sup conditions for the MFVM were proven in a 
one-dimensional problem and verified numerically using a generalized eigenvalue problem for higher dimensions. For the 
non-smooth problems, such as interface problems, the trial functions φi need to be constructed by including various non-
polynomial functions that mimic the non-smooth features of exact solutions. Detailed investigation in this regard will be 
conducted in a forthcoming study.
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