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THE W 1
p STABILITY OF THE RITZ PROJECTION

ON GRADED MESHES

HENGGUANG LI

Abstract. Consider the Poisson equation on a convex polygonal domain and
the finite element method of degree m ≥ 1 associated with a family of graded
meshes for possible singular solutions. We prove the stability of the Ritz pro-
jection onto the finite element space in W 1

p , 1 < p ≤ ∞. Consequently, we

obtain finite element error estimates in W 1
p for 1 < p ≤ ∞ and in Lp for

1 < p < ∞. The key to the analysis is the use of the “index engineering”
methodology in modified Kondrat′ev weighted spaces. We also mention pos-
sible extensions and applications of these results.

1. Introduction

Let Ω ⊂ R
2 be a bounded convex polygonal domain. We consider the Poisson

equation with the Dirichlet boundary condition

−Δu = f in Ω, u = 0 on ∂Ω,(1.1)

where for simplicity, we assume f is sufficiently smooth. Using continuous piece-
wise polynomials associated with a triangulation of the domain, the finite element
method approximates the solution of (1.1) based on a variational principle. As the
Ritz projection of u on the finite dimensional space, the finite element solution un

is naturally stable in the induced energy norm

‖un‖H1(Ω) ≤ C‖u‖H1(Ω).

This stability result has been a critical ingredient in analyzing the H1 approxima-
tion properties of the finite element method [8, 10]. In addition to the H1 energy
norm, the finite element approximation in non-energy norms, such as W 1

p and Lp,
is of particular interest and has many applications. For example, see [2, 12, 24] for
optimal control problems and [13, 15, 32] for non-linear problems. Unlike the anal-
ysis in H1, the stability estimates in non-energy spaces are technically challenging
and usually require additional restrictions on the geometry of the mesh.

It is well known that the solution of (1.1) may possess singularities due to the
non-smoothness of the domain. Mesh grading techniques are widely used to improve
the accuracy of the finite element method approximating such singular solutions
[1, 4, 7, 23, 26]. In particular, meshes with general grading properties (Definition
2.6) have proved to be optimal in the H1 norm [3, 25, 31]. Beyond the energy
norm, it is of both theoretical and practical importance to investigate finite element
approximations on these graded meshes in non-energy norms.
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The W 1
p /L

p analysis has a long history and early results can be traced back to
1970s [17,28–30,33–35]. Here, we survey some relevant results in the literature. For
equation (1.1), under the assumption that the mesh is quasi-uniform, the following
stability result was announced by Rannacher and Scott [30]

‖un‖W 1
p (Ω) ≤ C‖u‖W 1

p (Ω), 2 ≤ p ≤ ∞,

where un is the linear finite element approximation. Let h be the mesh size. Then,
assuming the regularity u ∈ W 2

p (Ω), they further derived optimal error estimates

‖u− un‖W 1
p (Ω) ≤ Ch‖u‖W 2

p (Ω) 2 ≤ p ≤ ∞,

‖u− un‖Lp(Ω) ≤ Ch2‖u‖W 2
p (Ω) 2 ≤ p < ∞.

When p = ∞, the L∞ estimate becomes [17]

‖u− un‖L∞(Ω) ≤ Ch2| lnh|‖u‖W 2
∞(Ω).

Note that in addition to the constraint on the mesh, these approximation results
require sufficient smoothness of the solution u ∈ W 2

p (Ω). It has been difficult to
obtain such non-energy estimates without the quasi-uniformity of the mesh. In [5],
optimal error estimates in L∞ were established for a 1D elliptic equation, allowing
mesh grading. In [33,34], using local analytical tools, the authors gave error bounds
in L∞ for a 2D model problem, and special graded meshes were also considered to
improve the error in the maximum norm. In [2], graded meshes were developed for
the singular solution of a 2D optimal control problem, along with sharp regularity
analysis for the solution. These meshes are optimal in the L∞ norm. In [14] it was
shown that the Ritz projection onto the finite element space is bounded in W 1

∞ for
equation (1.1) on a class of graded (adaptive) meshes with specific conditions on
the mesh geometry.

In this paper, we prove the stability of the Ritz projection onto the finite element
space of degree m ≥ 1 in W 1

p (Theorem 5.5), 1 < p ≤ ∞, on a family of graded
meshes (Definition 2.6) for the model problem (1.1). In turn, we establish finite
element error estimates in W 1

p , 1 < p ≤ ∞, and in Lp, 1 < p < ∞, (Corollary
5.6). In contrast to the local analysis in [14], the novelty of our approach lies in
the use of the “index engineering” methodology [30] in modified Kondrat′ev spaces
(Km

�μ ) [22]. The Km
�μ space (Definition 2.3) plays an important role in our analysis

by providing needed regularity estimates for possible singular solutions. However,
the weight ρ in Km

�μ vanishes on vertices of the domain, which raises concerns on
the interpolation error estimates in the Km

�μ norm. The remedy is to replace the

weight ρ by a new function ϑ (2.9). This modification makes it possible that in the
new space, we obtain the analog (Proposition 3.1) of the regularity estimate in the
Km

�μ space (Proposition 2.5), and it also gives the new function ϑ a positive lower
limit on the domain, which leads to the uniform bound for the interpolation error
in the new space (Proposition 3.2). Our further analysis is then built upon these
observations.

Note that u ∈ W 2
p (Ω) does not always hold for any p even on convex domains.

Therefore, mesh grading may be necessary for the finite element approximation to
achieve the optimal rate of convergence in W 1

p . On the other hand, the Km
�μ space

has good scaling properties and describes full regularity dependence of the solution
on the data (Proposition 2.5). With the analysis in weighted spaces, our result
can help develop effective graded meshes in non-energy norms. In addition, for 3D
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polyhedral domains, sharp a priori estimates for anisotropic singular solutions (edge
and vertex singularities) of elliptic problems can be formulated in the 3D analog of
the weighted space Km

�μ [9, 11, 27]. Therefore, we develop the analytical procedure
in this paper also in the hope of preparing technical ingredients for the non-energy
norm analysis on 3D anisotropic meshes.

The rest of the paper is organized as follows. In Section 2, we introduce the
weighted space Km

�μ and the graded mesh for singular solutions. Then, we obtain a

preliminary stability estimate in W 1
p . In Section 3, we derive useful regularity and

interpolation error estimates with new weight functions. In Section 4, based on
the upper bound of the integral involving different weight functions (Lemma 4.1),
we formulate two important weighted regularity estimates (Lemmas 4.3 and 4.4).
These results will be used in the W 1

p stability analysis. In Section 5, using weighted
finite element analysis, we obtain the main results: the stability and approximation
estimates for the finite element solution on graded meshes in the aforementioned
non-energy norm. We end with some concluding remarks in Section 6.

Throughout the paper, by a � b, we mean that there are constants C1, C2 > 0,
independent of the mesh parameter n, such that C1b ≤ a ≤ C2b. The generic
constant C > 0 in our analysis below may be different at different occurrences. It
will depend on the computational domain, but not on the functions involved in the
estimates or the mesh parameter n in the finite element algorithms.

2. Preliminaries

We introduce necessary notation and definitions in this section. Some prelimi-
nary estimates will also be provided.

2.1. Weighted spaces and graded meshes. For any ω ⊂ Ω, we use the standard
notation Wm

p (ω) for the Sobolev spaces. Namely, for m ≥ 0, when 1 ≤ p < ∞,

|v|Wm
p (ω) :=

⎛
⎝ ∑

|α|=m

∫
ω

|∂αv|pdx

⎞
⎠

1/p

, ‖v‖Wm
p (ω) :=

⎛
⎝∑

k≤m

|v|p
Wk

p (ω)

⎞
⎠

1/p

;

when p = ∞,

|v|Wm
∞(ω) := max

|α|=m

(
ess sup{|∂αv(x)|, x ∈ ω}

)
, ‖v‖Wm

∞ (ω) := max
k≤m

(
|v|Wk

∞(ω)

)
,

where α = (α1, α2) ∈ Z
2
≥0 is the multi-index and |α| = α1 + α2. Note that

Hm(Ω) = Wm
2 (Ω) for m ≥ 1, and L2(Ω) = W 0

2 (Ω).
Let H1

0 (Ω) ⊂ H1(Ω) be the subspace consisting of functions with zero trace on
∂Ω. The variational solution u ∈ H1

0 (Ω) of equation (1.1) satisfies

a(u, v) =

∫
Ω

∇u · ∇vdx =

∫
Ω

fvdx = (f, v), ∀v ∈ H1
0 (Ω).

The regularity of the solution depends on the smoothness of the domain. Near
the non-smooth points on the boundary (i.e., vertices of the polygonal domain Ω),
u may be singular in certain Sobolev spaces even if the given data f is smooth.
These singularities raise issues on both the well-posedness of the solution and on
the effectiveness of the numerical approximation.

In particular, we recall the following useful regularity results for (1.1) in Sobolev
spaces (Section 2.7 in [20]).
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Proposition 2.1. Let φ be the largest interior angle of Ω. The Laplace operator

−Δ : Wm+2
p (Ω) ∩H1

0 (Ω) → Wm
p (Ω), m ≥ 0,

defines an isomorphism, provided that the parameter p satisfies 1 < p < ηm, where{
ηm = ∞ for π/φ ≥ m+ 2,
ηm = 2

m+2−π/φ for π/φ < m+ 2.

Remark 2.2. Since Ω is convex, for m = 0, η0 = 2/(2 − π/φ) > 2. Thus, by the
Sobolev embedding theorem, if f is sufficiently smooth, u ∈ W 1

p (Ω) for 1 < p ≤ ∞.
Proposition 2.1 also holds on non-convex polygonal domains. Therefore, when
φ > π, η0 = 2/(2−π/φ) < 2. This leads to the well-known partial regularity in H2.
Namely, −Δ : H2 ∩ H1

0 → L2 is no longer a bijection on domains with reentrant
corners.

Now, we define the weighted Sobolev space in which full regularity estimates can
be obtained on polygonal domains.

Definition 2.3 (Kondrat′ev spaces). Let vi, 1 ≤ i ≤ l, be the ith vertex of Ω and
V := {vi} the vertex set. Let ri(x) be the distance function from x ∈ Ω to vi.
Let 
μ := (μ1, μ2, · · · , μl) be an l-dimensional vector. For a constant c, we denote
c± 
μ := (c± μ1, c± μ2, · · · , c± μl). Then, we define the function

ρ(x) :=
∏

1≤i≤l

ri(x),

and its vector exponents

ρc±�μ(x) :=
∏

1≤i≤l

ri(x)
c±μi = ρc

∏
1≤i≤l

ri(x)
±μi .

Then, the Kondrat′ev space is

Km
�μ (Ω) := {ρ|α|−�μ∂αv ∈ L2(Ω) for all |α| ≤ m},

|v|Km
�μ
(Ω) :=

⎛
⎝ ∑

|α|=m

‖ρm−�μ∂αv‖pL2(Ω)

⎞
⎠

1/2

, ‖v‖Km
�μ
(Ω) :=

⎛
⎝ ∑

|α|≤m

|v|2K|α|
�μ

(Ω)

⎞
⎠

1/2

.

Remark 2.4. Kondrat′ev-type spaces are widely used in a priori estimates for elliptic
equations. See [11, 20, 22, 25, 27] and the references therein. Note that in the
neighborhood of the vertex vi, ρ is equivalent to the distance function ri. Let
B(x, r) be the ball of radius r with center at x. Recall the ith vertex vi of Ω. Thus,
we can choose 0 < r̄ < 1 and define the neighborhood ωi := B(vi, r̄)∩Ω of vi, such
that ωi ∩ ωj = ∅ for i �= j, and the distance from any x ∈ ωi to the vertex set V is
the distance ri(x) to vi.

In contrast to Proposition 2.1, we have the following full-regularity estimates in
weighted spaces [25].

Proposition 2.5. Let φi be the interior angle associated with the ith vertex vi and

a := (a1, a2, · · · , al). Then, for −π/φi < ai < π/φi, if f ∈ Km

�a−1(Ω), the variational
solution of equation (1.1) satisfies

‖u‖Km+2
�a+1

(Ω) ≤ C‖f‖Km
�a−1

(Ω).
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In particular, if ai ≤ 1, we have

‖u‖Km+2
�a+1

(Ω) ≤ C‖f‖Km
�a−1

(Ω) ≤ C‖f‖Hm(Ω).

Based on a priori estimates in weighted spaces, graded meshes can be used to
handle the singular solution from the non-smoothness of the domain. In this paper,
we consider graded meshes with the following general properties (see [3] and the
references therein).

Definition 2.6 (Graded meshes). Let Tn = {Tk} be a triangulation of Ω with
shape-regular triangles, where the mesh parameter n ≥ 0 is an integer, such that

h := max
k

diam(Tk) � 2−n.

For a triangle T ∈ Tn, let hT := diam(T ). Let 
a = (a1, a2, · · · , al), 0 < ai ≤ 1, be
a vector. Recall that ρ is comparable to the distance function to the vertex set V .
Then, we assume that the mesh Tn is graded to each vertex vi ∈ V in the following
way:

(2.1) hT �
{

hρ1−ai , if minx∈T ρ(x) > 0,
h1/ai , if minx∈T ρ(x) = 0.

Let Sn ⊂ H1
0 (Ω) be the Lagrange finite element space of degree m ≥ 1 as-

sociated with the graded triangulation Tn. Namely, Sn = {v ∈ C(Ω), v|T ∈
Pm, for any triangle T ∈ Tn}, where Pm is the space of polynomials of degree
m. Then, the finite element solution un ∈ Sn for equation (1.1) is

(2.2) a(un, vn) = (f, vn), ∀vn ∈ Sn.

Remark 2.7. The graded meshes (Definition 2.6) allow the change of the mesh
size based on the distance to the vertex, which is determined by the vector 
a.
For equation (1.1), a sharp range for the vector 
a can be determined, for which
the associated graded meshes lead to the optimal convergence rate for the finite
element approximation of singular solutions in the H1 norm [3,6,25]. Note that for
ai = 1, Tn is quasi-uniform near the vertex vi; while for 0 < ai < 1, the mesh size
gradually decreases when approaching vi. The relation between the mesh size and
the distance to the vertex set can be quantified as follows.

Definition 2.8 (Mesh layers). Let 4d be the length of the shortest edge of Ω. Recall
the distance function ri to the vertex vi. Let Ω0 := {x ∈ Ω, ri(x) > 2d, 1 ≤ i ≤ l}.
Recall 
a from Definition 2.6. Define the vector 
κ = (κ1, κ2, · · · , κl), such that

κi = 2−1/ai , 1 ≤ i ≤ l.(2.3)

Then, in the neighborhood of each vertex vi ∈ V , based on the distance to the
vertex, we define the subsets Li,j , 0 ≤ j ≤ n, such that

d < ri|Li,0
≤ 2d; dκj

i < ri|Li,j
≤ dκj−1

i for 1 ≤ j ≤ n− 1; 0 < ri|Li,n
≤ dκn

i .

Then, we denote the jth layer Lj , 0 ≤ j ≤ n, of the mesh Tn by

Lj =
⋃

1≤i≤l

Li,j .

Clearly, Li,j∩Li,k = ∅ if j �= k and Ω = Ω0∪(
⋃

0≤j≤n Lj). To simplify the notation,
in the text below, we also denote the specific neighborhoods of the vertex vi by

(2.4) Ti,j :=
⋃

j≤k≤n

Li,k, 0 ≤ j ≤ n.
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54 HENGGUANG LI

Figure 1. Three consecutive graded refinements of a polygonal
domain with 
κ = (0.2, 0.5, 0.5, 0.5) (left – right): T0, the initial
triangulation; T1, the mesh after one refinement; T2, the mesh
after two refinements.

Remark 2.9. Based on Definition 2.6 and (2.3), on Tn, the diameter of the triangles
in Li,j is{

hi,j � hr1−ai
i � hκ

j(1−ai)
i � κj

i2
j−n for 0 ≤ j ≤ n− 1,

hi,n � h1/ai � κn
i .

(2.5)

In addition, by Definition 2.8 and (2.5), since area(Li,j) � κ2j
i , the number of

triangles in Li,j is O(κ2j
i /h2

i,j) = O(22(n−j)) and the number of triangles in Ω0 is

O(h−2) = O(22n). Therefore, the total number of triangles in a graded mesh Tn
(Definition 2.6) is

O
(
22n +

∑
1≤i≤l, 0≤j≤n

22(n−j)
)
= O(22n).

Hence, the dimension of the finite element space Sn is O(4n).

We finish this subsection by giving a simple construction of graded meshes (see
[6, 25]) that satisfy the condition (2.1) in Definition 2.6.

Example 2.10. Let T be a triangulation of Ω whose vertices include V , such
that no triangle in T has more than one of its vertices in V . Recall the vector

κ = (κ1, κ2, · · · , κl) from (2.3), a 
κ refinement of T , denoted by 
κ(T ), is obtained
by dividing each edge AB of T in two parts as follows:

• If neither A nor B is in V , then we divide AB into two equal parts.
• Otherwise, if A is vi, we divide AB into AC and CB such that |AC| =
κi|AB|.

This will divide each triangle of T into four triangles. Given an initial triangu-
lation T0, the associated family of graded triangulations {Tj : j ≥ 0} is defined
recursively, Tj+1 = 
κ(Tj). See Figure 1 for an illustration of this procedure. With
a straightforward calculation, it can be shown that this construction leads to a tri-
angulation Tn with the mesh size (2.5) in the layer Li,j , which verifies the condition
(2.1).

2.2. Preliminary W 1
p analysis. We begin by introducing new functions that are

necessary for the analysis. For a graded mesh Tn, recall that the dimension of the
finite element space N := dim(Sn) is O(4n). Recall the largest mesh size h = 2−n.
For any point z ∈ Ω, let Tz ∈ Tn be the triangle, such that z ∈ Tz, and let
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hz = diam(Tz) be its diameter. If z is on the intersection of multiple triangles, we
choose one of the triangles as Tz. The choice is not unique but fixed. Define the
function

σz(x) = (|x− z|2 + t2h2
z)

1/2, t ≥ 1.(2.6)

Therefore, for any triangle T ∈ Tn, there is a constant C, independent of n, such
that

σz(x)|T ≥ ChT and max
x∈T

σλ
z (x) ≤ Cmin

x∈T
σλ
z (x),(2.7)

where hT is the diameter of T and λ ∈ R. The estimate σz(x)|T ≥ ChT can be
derived as follows. Suppose z ∈ Li,j , for 1 ≤ j ≤ n. Then, based on Definition
2.8, for any T ⊂ Li,k, j − 1 ≤ k ≤ n, hz ≥ ChT , and therefore the estimate
holds. For any T ⊂ Li,k, 0 ≤ k ≤ j − 2, by the definition of mesh layers, we have
|x|T − z| ≥ Cκk

i ≥ Cκk
i 2

k−n ≥ ChT . For T ⊂ Ω \ Ti,0 (see (2.4) for the definition
of Ti,0), we have |x|T − z| ≥ C ≥ ChT . The estimate thus holds for any z ∈ Li,j ,
1 ≤ j ≤ n. Now, for z ∈ Ω \

⋃
1≤j≤n Lj , hz � 2−n. Therefore, for any T ∈ Tn,

σz(x) ≥ hz ≥ hT . Hence, we obtain the desired estimate for any z ∈ Ω.
Let δz ∈ C∞

0 (Tz) be a function such that for m ≥ 1 and s = 0, 1, · · · ,∫
Ω

δzpdx = p(z), ∀p ∈ Pm−1, and ‖∇sδz‖L∞(Ω) ≤ Ch−2−s
z ,(2.8)

where ∇s denotes the vector of all sth-order derivatives. Recall the weight function
ρ(x) from Definition 2.3. Then, we define a modified weight function associated
with the triangulation Tn,

ϑ(x) :=
∏

1≤i≤l

(
r2i (x) + h2

i,n

)1/2
,(2.9)

where hi,n is mesh size (2.5) in Li,n of the nth layer, and its vector exponents

ϑc±�μ(x) :=
∏

1≤i≤l

(
r2i (x) + h2

i,n

) 1
2 (c±μi).

Consequently, based on the definitions, for λ ∈ R and a multi-index α, we have

|∂ασλ
z (x)| ≤ Cσλ−|α|

z (x) and |∂αϑλ(x)| ≤ Cϑλ−|α|(x).(2.10)

Remark 2.11. The functions σz and δz are the analogs of the weight function and the
regularized Dirac δ-function defined in [30] for quasi-uniform meshes. We modified
their definitions in order to represent the local mesh size on graded triangulations.
The parameter t ≥ 1 in (2.6) is arbitrary but fixed in our subsequent analysis.
In Lemma 5.2, we will specifically choose t. We introduce the function ϑ that
resembles the distance function ρ in Definition 2.3, except on the triangles touching
the vertices of the domain. Namely,{

ϑ(x) � |x− vi| � κj
i on Li,j for 0 ≤ j < n,

ϑ(x) � hi,n � κn
i on Li,n.

(2.11)

Note that ϑ does not decay to zero on the last mesh layer Ln. These are the desired
properties to carry out our analysis below.

We first give an estimate on the weight function σz defined in (2.6).
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Lemma 2.12. Recall σz(x) = (|x− z|2 + t2h2
z)

1/2, h := 2−n, and hz := diam(Tz).
Then, for z ∈ Ω and λ > 0, there exists a constant C > 0, independent of n and t,
such that

‖
∫
Ω

hλ
z

hλ
σ−2−λ
z (x)dz‖L∞(Ω) ≤ Ch−λ.(2.12)

Proof. Recall the mesh layer Li,j from Definition 2.8. Let hx be the diameter of
the triangle that contains x. We show (2.12) in the following two cases.

Case I (x ∈ Li,j for 1 ≤ j ≤ n). We need to consider the situation for z ∈ Li,k,
0 ≤ k ≤ n, and for z ∈ Ω \ Ti,0.

Suppose z ∈ Li,k, for 0 ≤ k ≤ n. Thus, by Definition 2.6 and (2.5), there
are positive constants c1, c

′
1, c2, and c′2, independent of j, k, and n, such that

c′1κ
k
i 2

k−n ≤ hz ≤ c1κ
k
i 2

k−n, and if j �= k, the distance Dj,k
i between the layers Li,j

and Li,k satisfies c′2κ
min(j,k)
i ≤ Dj,k

i ≤ c2κ
min(j,k)
i .

We first consider the case |z − x| ≤ hz, which implies c′2κ
min(j,k)
i ≤ c1κ

k
i 2

k−n.
Thus, if j > k, we have n− k ≤ | log2(c1/c′2)|, and therefore j − k ≤ | log2(c1/c′2)|.
If j < k, we have κk−j

i ≥ (c′2/c1)2
n−k, and therefore by (2.3),

j − k ≥ ai
(
(n− k) + log2(c

′
2/c1)

)
.

This may hold only when n − k < | log2(c′2/c1)| and log2(c
′
2/c1) < 0. These

two conditions imply k − j ≤ | log2(c′2/c1)|. Hence, if |z − x| ≤ hz and k �= j,
we have |k − j| ≤ | log2(c′2/c1)|. By (2.5), hx/hz � (2κi)

j−k, which leads to

C(2κi)
| log2(c

′
2/c1)|hz ≤ hx ≤ C(2κi)

−| log2(c
′
2/c1)|hz, and implies hx � hz, since

| log2(c′2/c1)| represents a constant. If k = j, it is clear that hx � hz. Thus, we
have shown hz � hx provided that |z − x| ≤ hz. Therefore,

∫
|z−x|≤hz

hλ
z

hλ
σ−2−λ
z dz ≤ C

∫
|z−x|≤hz

hλ
x

hλ
h−2−λ
x dz ≤ Ch−λ.(2.13)

We now consider the case |z−x| > hz. First, for z ∈ Li,j , we have hz � κj
i2

j−n.
Thus,

(2.14)

∫
|z−x|>hz , z∈Li,j

hλ
z

hλ
σ−2−λ
z dz ≤

∫
|z−x|>hz , z∈Li,j

hλ
z

hλ
|z − x|−2−λdz ≤ Ch−λ.

For z ∈ Li,k, where k > j, we have |z − x| � κj
i and hz � κk

i 2
k−n. Thus,

∫
|z−x|>hz , z∈Li,k

hλ
z

hλ
σ−2−λ
z dz ≤ C

∫
|z−x|>hz , z∈Li,k

hλ
z

hλ
κ
j(−2−λ)
i dz

≤ Ch−λκ2k+kλ−jλ−2j
i 2λ(k−n) ≤ C2−λ|k−j|h−λ.(2.15)

For z ∈ Li,k, where k < j, we have |z − x| � κk
i and hz � κk

i 2
k−n. Thus,

∫
|z−x|>hz , z∈Li,k

hλ
z

hλ
σ−2−λ
z dz ≤ C

∫
|z−x|>hz , z∈Li,k

hλ
z

hλ
κ
k(−2−λ)
i dz

≤ Ch−λκ2k+kλ−kλ−2k
i 2λ(k−n) ≤ C2−λ|k−j|h−λ.(2.16)
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Note that if z ∈ Ω \ Ti,0, we have |z − x| � 1 > hz. Therefore, by (2.13), (2.14),
(2.15), and (2.16), we have∫

Ω

hλ
z

hλ
σ−2−λ
z dz =

∫
|z−x|≤hz

hλ
z

hλ
σ−2−λ
z dz

+
∑
k≤n

∫
|z−x|>hz , z∈Li,k

hλ
z

hλ
σ−2−λ
z dz +

∫
Ω\Ti,0

hλ
z

hλ
σ−2−λ
z dz.

≤ Ch−λ(1 +
∑
s≤n

2−sλ + 1) ≤ Ch−λ.(2.17)

Case II (x ∈ Ω \
⋃

1≤j≤n Lj). By (2.5), we have hx � 2−n and for any z ∈ Ω,

hz ≤ Chx, where C is independent of n. Note that for |z − x| ≤ hx, hz � hx � h.
Therefore, we have∫

Ω

hλ
x

hλ
σ−2−λ
z dz =

∫
|z−x|≤hx

hλ
z

hλ
σ−2−λ
z dz +

∫
|z−x|>hx

hλ
z

hλ
σ−2−λ
z dz

≤ Ch2
xh

−2−λ
z +

∫
|z−x|>hx

|z − x|−2−λdz ≤ Ch−λ.(2.18)

The lemma is thus proved by (2.17) and (2.18). �

Recall that un ∈ Sn is the finite element solution in (2.2) on the graded mesh
Tn (Definition 2.6). In order to analyze ‖un‖W 1

p (Ω), we introduce two functions g

and gn as follows.
Recall the function δz in (2.8). Let g ∈ H1

0 (Ω) satisfy

a(g, w) = (−ν · ∇δz, w), ∀w ∈ H1
0 (Ω),(2.19)

where ν is an arbitrary direction vector. Thus, g can be considered as a “derivative”
of the regularized Green’s function. Note that by the usual regularity estimate,
‖g‖H2(Ω) ≤ C‖δz‖H1(Ω). Denote by gn ∈ Sn the finite element approximation of g,
such that

a(gn, w) = (−ν · ∇δz, w), ∀w ∈ Sn.(2.20)

Recall that for a point z ∈ Ω, we let Tz ∈ Tn be the triangle containing z
and hz = diam(Tz). Thus, we obtain an estimate concerning the upper bound of
‖∇un‖Lp(Ω).

Lemma 2.13. Recall h := 2−n and hz := diam(Tz) for z ∈ Ω. Define

M = max
z∈Ω

(
(

∫
Ω

hλ

hλ
z

σ2+λ
z |∇(g − gn)|2dx)

1
2

)
.

For 2 < p ≤ ∞ and λ > 0, we have

‖∇un‖Lp(Ω) ≤ C‖∇u‖Lp(Ω)(1 + h−λ
2 M),(2.21)

where C is independent of n and t, and t ≥ 1 is from (2.6).

Proof. Note that by (2.8), (2.19), and (2.20), we have

ν · ∇un(z) = (ν · ∇un, δz) = (−ν · ∇δz, un) = (∇g,∇un)

=
(
∇g,∇(un − u)

)
+ (∇g,∇u)

= (ν · ∇u, δz)−
(
∇(g − gn),∇u

)
.(2.22)
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We first derive the result (2.21) for p = ∞. By (2.8) and Hölder’s inequality, we
have

(ν · ∇u, δz) =

∫
Ω

δzν · ∇udx ≤ C‖∇u‖L∞(Ω),(2.23)

and by Hölder’s inequality and (2.6),

(
∇(g − gn),∇u

)
=

∫
Ω

∇(g − gn) · ∇udx

≤
( ∫

Ω

hλ

hλ
z

σ2+λ
z |∇(g − gn)|2dx

) 1
2
( ∫

Ω

hλ
z

hλ
σ−2−λ
z |∇u|2dx

) 1
2 ,

≤ M‖∇u‖L∞(Ω)

( ∫
Ω

hλ
z

hλ
σ−2−λ
z dx

) 1
2 ≤ Ch−λ

2 M‖∇u‖L∞(Ω).(2.24)

Then, the case for p = ∞ is proved by combining (2.22), (2.23), and (2.24).
For 2 < p < ∞, using Hölder’s inequality and (2.8), the first term in (2.22) leads

to ∫
Ω

(

∫
Ω

δzν · ∇udx)pdz ≤ C

∫
Ω

[
‖∇u‖pLp(Tz)

(

∫
Tz

δ
p

p−1
z dx)p−1

]
dz

≤ C

∫
Ω

h−2
z ‖∇u‖pLp(Tz)

dz ≤ C‖∇u‖pLp(Ω).(2.25)

For the second term in (2.22), by Hölder’s inequality,∫
Ω

( ∫
Ω

∇(g − gn) · ∇udx
)p
dz

≤
∫
Ω

( ∫
Ω

hλ

hλ
z

σ2+λ
z |∇(g − gn)|2dx

) p
2
( ∫

Ω

hλ
z

hλ
σ−2−λ
z |∇u|2dx

) p
2 dz.(2.26)

Using Hölder’s inequality, we have∫
Ω

hλ
z

hλ
σ−2−λ
z |∇u|2dx ≤ (

∫
Ω

hλ
z

hλ
σ−2−λ
z |∇u|pdx) 2

p (

∫
Ω

hλ
z

hλ
σ−2−λ
z dx)

p−2
p

≤ C(hλ)
2−p
p (

∫
Ω

hλ
z

hλ
σ−2−λ
z |∇u|pdx) 2

p .(2.27)

Then, by (2.22), (2.25), Minkowski’s inequality, (2.26), (2.27), Fubini’s Theorem,
and (2.12), we have

‖∇un‖Lp(Ω) ≤
(
‖(ν · ∇un, δz)‖Lp(Ω) + ‖(∇(g − gn),∇u)‖Lp(Ω)

)

≤ C
(
‖∇u‖Lp(Ω) +

[ ∫
Ω

Mp(

∫
Ω

hλ
z

hλ
σ−2−λ
z |∇u|2dx)

p
2 dz

]1/p)

≤ C
(
‖∇u‖Lp(Ω) + (hλ)

2−p
2p M

[ ∫
Ω

(

∫
Ω

hλ
z

hλ
σ−2−λ
z dz)|∇u|pdx

]1/p)

≤ C
(
‖∇u‖Lp(Ω) + (hλ)

2−p
2p M‖∇u‖Lp(Ω)‖

∫
Ω

hλ
z

hλ
σ−2−λ
z dz‖1/pL∞(Ω)

)

≤ C‖∇u‖Lp(Ω)

(
1 + h−λ

2 M
)
.(2.28)

Thus, (2.22)–(2.24) and (2.28) together complete the proof of (2.21). �

Licensed to Wayne St Univ. Prepared on Thu Jan 12 23:17:28 EST 2017 for download from IP 141.217.11.85.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



STABILITY ANALYSIS ON GRADED MESHES 59

Remark 2.14. Based on Lemma 2.13, in order to show ‖∇un‖Lp(Ω) ≤ C‖∇u‖Lp(Ω),
it suffices to prove

M = max
z∈Ω

(
(

∫
Ω

hλ

hλ
z

σ2+λ
z |∇(g − gn)|2dx)

1
2

)
≤ Ch

λ
2 ,(2.29)

for appropriately chosen λ > 0. The parameter λ for now is arbitrary but fixed. Due
to the local behavior of δz in (2.19) and (2.20), motivated by [30], we introduced σz

to cancel the mesh-dependent singularity in the regularized Green’s function. The
subsequent sections are dedicated to obtain the estimate in (2.29) through analysis
in weighted spaces.

3. Regularity and interpolation analysis

From now on, we start to develop analytical tools for (2.29). In this section, we
establish the analog of the full-regularity result (Proposition 2.5) in spaces with a
new weight, and in turn give interpolation error estimates in the new space.

We first derive new regularity estimates in norms involving the weight function
ϑ defined in (2.9).

Proposition 3.1. Let v ∈ H1
0 (Ω) ∩ H2(Ω). Recall 
a from Definition 2.6 with

0 < ai ≤ 1. Then, we have

∑
0≤s≤2

∫
Ω

ϑ2s−2−2�a|∇sv|2dx ≤ C

∫
Ω

ϑ2−2�a|Δv|2dx.

Proof. Recall Ln in Definition 2.8. Let Ωc := Ω \ Ln. We first have

∑
0≤s≤2

∫
Ω

ϑ2s−2−2�a|∇sv|2dx

=
∑

0≤s≤2

∫
Ωc

ϑ2s−2−2�a|∇sv|2dx+
∑

0≤s≤2

∑
1≤i≤l

∫
Li,n

ϑ2s−2−2�a|∇sv|2dx.(3.1)

Note ρ(x) ≤ ϑ(x) on Ω and ϑ(x) ≤ Cρ(x) on Ωc. Note that the weighted regularity
estimate in Proposition 2.5 holds for any 0 < ai ≤ 1 on the convex domain Ω.
In addition, by (2.9) and Definition 2.8, for s = 0, 1, because ρ ≤ ϑ on Li,n and

2s − 2 − 2ai < 0, we have ϑ2s−2−2�a ≤ Cρ2s−2−2�a on Li,n. Thus, by the definition
of the weighted space Km

�μ and Proposition 2.5, we have

∑
0≤s≤2

∫
Ωc

ϑ2s−2−2�a|∇sv|2dx+
∑

0≤s≤1

∑
1≤i≤l

∫
Li,n

ϑ2s−2−2�a|∇sv|2dx

≤
∑

0≤s≤2

∫
Ωc

ϑ2s−2−2�a|∇sv|2dx+ C
∑

0≤s≤1

∑
1≤i≤l

∫
Li,n

ρ2s−2−2�a|∇sv|2dx

≤ C‖v‖2K2
�a+1

(Ω) ≤ C‖Δv‖2K0
�a−1

(Ω)

= C

∫
Ω

ρ2−2�a|Δv|2dx ≤ C

∫
Ω

ϑ2−2�a|Δv|2dx.(3.2)

Then, it remains to show the upper bound of the second term in (3.1) for the
case s = 2. Recall the constant r̄ and the neighborhood ωi from Remark 2.4. Let
χi(x) ∈ C∞(Ω) be a partition of unity of Ω, such that for 1 ≤ i ≤ l, χi(x) = 1
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if ri(x) < r̄/2 and χi(x) = 0 if ri(x) ≥ r̄; χ0(x) := 1 −
∑

1≤i≤l χi(x). Then

v ∈ H1
0 (Ω) ∩H2(Ω) implies χiv ∈ H1

0 (ωi) ∩H2(ωi) and∑
1≤i≤l

∫
Li,n

ϑ2−2�a|∇2v|2dx ≤ C
∑

1≤i≤l

h2−2ai
i,n

∫
Li,n

|∇2v|2dx

≤ C
∑

1≤i≤l

h2−2ai
i,n

∫
ωi

|∇2(χiv)|2dx ≤ C
∑

1≤i≤l

h2−2ai
i,n

∫
ωi

|Δ(χiv)|2dx

≤ C
∑

1≤i≤l

h2−2ai

i,n

∫
ωi

|Δv|2 + |∇v|2 + |v|2dx

≤ C
∑

1≤i≤l

∫
ωi

ϑ2−2�a(|Δv|2 + |∇v|2 + |v|2)dx,(3.3)

where we used the fact that for any w ∈ H1
0 (ωi)∩H2(ωi), ‖w‖H2(ωi) ≤ C‖Δw‖L2(ωi)

[16, 19]. Recall 0 < ai ≤ 1. Then, by the definition of ωi, Proposition 2.5, and the
fact that ϑ ≤ C, we have

∑
1≤i≤l

∫
ωi

ϑ2−2�a(|∇v|2 + |v|2)dx ≤ C
∑

0≤s≤1

∑
1≤i≤l

∫
ωi

ϑ2s−2−2�a|∇sv|2dx

≤ C‖v‖2K2
�a+1

(Ω) ≤ C

∫
Ω

ϑ2−2�a|Δv|2dx.(3.4)

Combining (3.1), (3.2), (3.3), and (3.4), we complete the proof. �

We are ready to obtain interpolation error estimates in new weighted norms that
are needed in subsequent analysis. Recall N � 4n is the dimension of the finite
element space Sn.

Proposition 3.2. For v ∈ H2(Ω), let vI ∈ Sn be its nodal interpolation associated
with the triangulation Tn. Recall 
a from Definition 2.6. Then, for λ ∈ R,

(3.5)

∫
Ω

σλ
z |∇s(v − vI)|2dx ≤ CN−1

∫
Ω

σ2−2s+λ
z |ϑ1−�a∇2v|2dx, s = 0, 1.

Proof. For any triangle T ∈ Tn, let hT be its diameter. In the case T ⊂ Li,j ,

0 ≤ j ≤ n, by (2.11), we have ϑ(x) � κj
i , for any x ∈ T . Recall hT � κj

i2
j−n from

(2.5). Then, by (2.7) and (2.3), we have∫
T

σλ
z |∇s(v − vI)|2dx ≤ max

x∈T
σλ
z (x)

∫
T

|∇s(v − vI)|2dx

≤ Ch4−2s
T max

x∈T
σλ
z (x)

∫
T

|∇2v|2dx ≤ Ch4−2s
T min

x∈T
σλ
z (x)

∫
T

|∇2v|2dx

≤ Ch4−2s
T

∫
T

σλ
z (x)|∇2v|2dx ≤ Cκ

j(4−2s)
i 2(j−n)(4−2s)

∫
T

σλ
z (x)|∇2v|2dx

≤ CN−1

∫
T

(κj
i2

j)(2−2s)2−n(2−2s)σλ
z |ϑ1−�a∇2v|2dx

≤ CN−1

∫
T

h
(2−2s)
T σλ

z |ϑ1−�a∇2v|2dx ≤ CN−1

∫
T

σ2−2s+λ
z |ϑ1−�a∇2v|2dx.(3.6)

In the case T ⊂ Ω0 = Ω \
⋃

i Ti,0, we can follow the same estimates above by
replacing κi with 1/2 and noting that ϑ is comparable to a constant. Therefore, we
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have ∫
T

σλ
z |∇s(v − vI)|2dx ≤ CN−1

∫
T

h
(2−2s)
T σλ

z |ϑ1−�a∇2v|2dx

≤ CN−1

∫
T

σ2−2s+λ
z |ϑ1−�a∇2v|2dx.(3.7)

The proof follows by adding up the estimates in (3.6) and (3.7) over all the triangles.
�

Remark 3.3. With a convex domain Ω, the solution of equation (1.1) satisfies
‖u‖H2(Ω) ≤ C‖f‖L2(Ω). Therefore, it is reasonable to assume v ∈ H2(Ω) in Proposi-
tions 3.1 and 3.2. Using the new weight function ϑ, we both recovered the regularity
result in Proposition 2.5 for m = 0 (Proposition 3.1) and obtained a uniform upper
bound for the interpolation error (Proposition 3.2). The interpolation error esti-
mate, however, is not obvious in the weighted space Km

�μ (i.e., replacing ϑ by ρ in

(3.5)). This is the motivation for us to introduce ϑ, instead of working with the
norm involving ρ.

4. More regularity estimates

Recall weight functions σz(x) and ϑ(x) in (2.6) and (2.9), respectively. In this
section, we derive useful estimates involving these functions. In particular, we
obtain important regularity results in Lemmas 4.3 and 4.4.

4.1. A weighted result. Recall N = dim(Sn) � 4n. We first derive the upper
bound of an integral that will frequently appear in the analysis.

Lemma 4.1. For any point z ∈ Ω, suppose z ∈ Tz ∈ Tn, where Tz is the triangle
that contains z chosen as in (2.6). Let 
a be from Definition 2.6 with 0 < ai ≤ 1. Let
amin := min1≤i≤l(ai). For 0 < |λ| < 2amin, choose q > 1, such that q(2amin−λ)>2.
Let hz = diam(Tz). Then, for n sufficiently large,∫

Ω

(σ−2+λ
z ϑ2−2�a)qdx ≤ Ch2+λq

z Nq,

where C is independent of n and t.

Proof. Case I (Tz ⊂ Li,j , 1 ≤ j ≤ n). Recall from (2.11), ϑ � κk
i on Li,k,

0 ≤ k ≤ n. Define Bz := {x ∈ Ω : |x − x′| ≤ thz, ∀x′ ∈ Tz} ∩ Ω. Recall Ti,j

from Definition 2.8. Thus, for n sufficiently large, Bz ⊂ Ti,0. We establish the
estimates on the sets R1 := (Ti,0 \Bz)∩ (

⋃
j−1≤k≤n Li,k), R2 := Ti,0 \ (Bz ∪R1) =

(Ti,0 \Bz) ∩ (
⋃

0≤k≤j−2 Li,k), Bz, and Ω \ Ti,0.

In R1, by (2.9) and the definition of Tn (Definition 2.6),

σz(x)
−2+λϑ(x)2−2�a ≤ Cσz(x)

−2+λκ
j(2−2ai)
i .(4.1)

On Li,k, 0 ≤ k ≤ j − 2,

σz(x)
−2+λϑ(x)2−2�a ≤ Cσz(x)

−2+λκ
k(2−2ai)
i .(4.2)

The conditions 0 < |λ| < 2amin ≤ 2 and q(2amin − λ) > 2 imply

(−2 + λ)q = −(2− λ)q ≤ −(2amin − λ)q < −2.(4.3)
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If the ith vertex vi /∈ Bz, then for any x ∈ Bz, ϑ(x) ≤ Cκj
i . Therefore, by (2.5)

and (2.3),∫
Bz

(σ−2+λ
z ϑ2−2�a)qdx ≤ C

∫
Bz

(t−2+λh−2+λ
z κ

j(2−2ai)
i )qdx ≤ C(t−2+λhλ

zN)qt2h2
z

≤ Ct2−2q+λqh2+λq
z Nq.

If vi ∈ Bz, then for x ∈ Bz, ϑ(x) ≤ Cthz. Therefore, by (2.5) and (2.3), we have∫
Bz

(σ−2+λ
z ϑ2−2�a)qdx ≤ C

∫
Bz

(t−2+λh−2+λ
z (thz)

(2−2ai))qdx

≤ C(tλ−2aihλ−2ai
z )qt2h2

z ≤ C22q(1−ai)(j−n)t2−2aiq+λqh2+λq
z Nq

≤ Ct2−2aiq+λqh2+λq
z Nq.

Combining these cases, we have a uniform upper bound on Bz,∫
Bz

(σ−2+λ
z ϑ2−2�a)qdx ≤ Ct2−2aiq+λqh2+λq

z Nq.(4.4)

Note that σz = O(1) and ϑ ≤ C on Ω \ Ti,0. Then, by (4.1), (4.2), (2.3), (2.5),
(4.4), and (4.3), we first have∫

Ω

(σ−2+λ
z ϑ2−2�a)qdx =

∫
Bz

(σ−2+λ
z ϑ2−2�a)qdx+

∫
R1

(σ−2+λ
z ϑ2−2�a)qdx

+
∑

0≤k≤j−2

∫
Li,k∩R2

(σ−2+λ
z ϑ2−2�a)qdx+

∫
Ω\Ti,0

(σ−2+λ
z ϑ2−2�a)qdx

≤ C
(
t2−2aiq+λqh2+λq

z Nq +

∫
R1

(κ
j(2−2ai)
i σ−2+λ

z )qdx

+
∑

0≤k≤j−2

∫
Li,k∩R2

(κ
k(2−2ai)
i σ−2+λ

z )qdx+ 1
)

≤ C
(
t2−2aiq+λqh2+λq

z Nq + κ
qj(2−2ai)
i (thz)

2−q(2−λ)

+
∑

0≤k≤j−2

(
κ
qk(2−2ai)
i κ

k(2−2q+λq)
i

)
+ 1

)

≤ C(t2−2aiq+λqh2+λq
z Nq + t2+λq−2qh2+λq

z Nq +
∑

0≤k≤j−2

κ
k(2+λq−2aiq)
i + 1).(4.5)

Note that by (2.5) and (2.3),

t2+λq−2qh2+λq
z Nq � t2+λq−2qκ

j(2+λq)
i 2(j−n)(2+λq)22nq

� t2+λq−2q2(2q−2−λq)n−(a−1
i −1)(2+λq)j .

If λq ≥ −2, by (4.3), we have

t2+λq−2q2(2q−2−λq)n−(a−1
i −1)(2+λq)j ≥ Ct2+λq−2q2(2q−a−1

i (2+λq))n ≥ 1,

given that n is sufficiently large. If λq < −2, for a sufficiently large n, by (4.3), we
have

t2+λq−2q2(2q−2−λq)n−(a−1
i −1)(2+λq)j ≥ 1.
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Therefore, under the conditions 0 < |λ| < 2amin ≤ 2, q(2amin − λ) > 2, and n
sufficiently large, we have

t2+λq−2qh2+λq
z Nq ≥ 1.(4.6)

Now for the term
∑

0≤k≤j−2 κ
k(2+λq−2aiq)
i in (4.5), by (2.3) and (2.5),

κ
k(2+λq−2aiq)
i ≤ Ch2+λq

z Nq2−a−1
i k(2+λq)+2kq2a

−1
i j(2+λq)2(n−j)(2+λq)2−2nq

≤ Ch2+λq
z Nq2(a

−1
i −1)(j−k)(2+λq)−(2q−2−λq)(n−k).

If λq ≥ −2, by (4.3),

2(a
−1
i −1)(j−k)(2+λq)−(2q−2−λq)(n−k) ≤ 2(2a

−1
i +a−1

i λq−2q)(n−k) = 2c̄1(k−n),

where c̄1 = 2q − 2a−1
i − a−1

i λq > 0. If λq < −2, by (4.3),

2(a
−1
i −1)(j−k)(2+λq)−(2q−2−λq)(n−k) ≤ 2c̄2(k−n),

where c̄2 = 2q − 2− λq > 0. Let c̄ = min(c̄1, c̄2). Therefore,

κ
k(2+λq−2aiq)
i ≤ C2c̄(k−n)h2+λq

z Nq.(4.7)

Note that by (4.3), the exponents of t in (4.5), 2−2aiq+λq < 0 and 2+λq−2q < 0.
Thus, by (4.5), (4.6), and (4.7), for z ∈ Tz ⊂ Li,j , 1 ≤ j ≤ n, we have∫

Ω

(σ−2−λ
z ϑ2−2�a)qdx ≤ C

(
t2−2aiq+λqh2+λq

z Nq + t2+λq−2qh2+λq
z Nq

+
∑

0≤k≤j−2

κ
k(2+λq−2aiq)
i + t2+λq−2qh2+λq

z Nq
)
≤ Ch2+λq

z Nq.(4.8)

Case II (Tz ⊂ Ω \ (
⋃

1≤j≤n Li,j)). Recall r̄ from Remark 2.4. For n sufficiently

large, we can pick a constant c > 1, such that in the region R3 = {x ∈ Ω, σz(x) ≤
r̄/c}, ϑ2−2�a(x) = O(1); in Ω \ R3, σz(x) = O(1). Recall that in this case, h2

z �
2−2n � N−1. Thus, we have∫

Ω

(σ−2+λ
z ϑ2−2�a)qdx =

∫
Bz

(σ−2+λ
z ϑ2−2�a)qdx+

∫
R3\Bz

(σ−2+λ
z ϑ2−2�a)qdx

+

∫
Ω\R3

(σ−2+λ
z ϑ2−2�a)qdx

≤ C
(
(t−2+λh−2+λ

z )qt2h2
z +

∫
R2\Bz

(σ−2+λ
z )qdx+ 1

)

≤ C
(
t2−2q+λqh2−2q+λq

z + (thz)
2−2q+λq + 1

)
≤ Ct2−2q+λqh2+λq

z Nq.(4.9)

The proof is complete by combining (4.8) and (4.9). �

Remark 4.2. Lemma 4.1 holds regardless of the sign of λ. For λ < 0, we shall
use a convenient form of this estimate. Namely, let λ′ = −λ > 0. Then, for
0 < λ′ < 2amin, q(2amin + λ′) > 2, and n sufficiently large,∫

Ω

(σ−2−λ′

z ϑ2−2�a)qdx ≤ Ch2−λ′q
z Nq.(4.10)

Licensed to Wayne St Univ. Prepared on Thu Jan 12 23:17:28 EST 2017 for download from IP 141.217.11.85.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



64 HENGGUANG LI

4.2. Intermediate regularity estimates. We derive two important weighted
regularity results for further analysis. Recall N := dim(Sn) � 4n and the pa-
rameter ηm in Proposition 2.1.

Lemma 4.3. Recall that z ∈ Tz, 
a, and amin from Lemma 4.1. Let 0 < λ <
min(2amin, 2 − 4/η0). Choose q > 1 such that q(2amin + λ) > 2 and λq < 2. Let
v ∈ H1

0 (Ω) be a function such that Δv ∈ H1
0 (Ω). Then, for n sufficiently large, we

have ∫
Ω

σ−2−λ
z |ϑ1−�a∇2v|2dx ≤ Ctλ−2q−1

N

∫
Ω

σ2−λ
z |∇Δv|2dx.

Proof. Let p > 1 be such that 1/p+ 1/q = 1. Then, by Hölder’s inequality

(4.11)

∫
Ω

σ−2−λ
z |ϑ1−�a∇2v|2dx ≤

( ∫
Ω

(σ−2−λ
z ϑ2−2�a)qdx

)1/q‖∇2v‖2L2p(Ω).

Note that λq < 2 implies p > 2/(2 − λ). Then, by (4.11), (4.10), Proposition 2.1,
and the Sobolev embedding theorem, we have∫

Ω

σ−2−λ
z |ϑ1−�a∇2v|2dx ≤ CNh2q−1−λ

z ‖∇2v‖2L2p(Ω)

≤ CNh2q−1−λ
z ‖Δv‖2L2p(Ω) ≤ CNh2q−1−λ

z ‖∇Δv‖2L4p/(2+2p)(Ω),(4.12)

where we needed 2p < η0 to be able to use Proposition 2.1. Note that λ < 2− 4/η0
implies 2/(2 − λ) < η0/2. Therefore, there is an open interval (2/(2− λ), η0/2) in
which p can be chosen in order to obtain (4.12). Let s = (1+p)/p and 1/s+1/s′ = 1.
Note that by Hölder’s inequality and p > 2/(2− λ),

‖∇Δv‖2/s
L4p/(2+2p)(Ω)

=

∫
Ω

|∇Δv|2/sdx

≤ (

∫
Ω

σ2−λ
z |∇Δv|2dx)1/s(

∫
Ω

σ(λ−2)s′/s
z dx)1/s

′

≤ C(

∫
Ω

σ(λ−2)/(s−1)
z dx)(s−1)/s(

∫
Ω

σ2−λ
z |∇Δv|2dx)1/s

≤ C(thz)
s−1(λ−2+2p−1)(

∫
Ω

σ2−λ
z |∇Δv|2dx)1/s.(4.13)

Combining (4.11), (4.12), and (4.13), we have∫
Ω

σ−2−λ
z |ϑ1−�a∇2v|2dx ≤ Ctλ−2q−1

N

∫
Ω

σ2−λ
z |∇Δv|2dx,

which completes the proof. �

We also need the following lemma.

Lemma 4.4. Recall 
a and amin from Lemma 4.1. Let f ∈ H1
0 (Ω) and ν be a

direction vector. Let v ∈ H1
0 (Ω) be the solution of

(4.14) a(v, w) = (−ν · ∇f, w), ∀w ∈ H1
0 (Ω).

For 0 < λ < min(2amin, 2− 4/η0), choose q > 1, such that q(2amin −λ) > 2. Then,∫
Ω

σ2+λ
z |ϑ1−�a∇2v|2dx ≤ C

(∫
Ω

σ2+λ
z |ϑ1−�a∇f |2dx+ t−λ− 2

q N

∫
Ω

σ2+λ
z |f |2dx

)
.
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Proof. Recall 0 < ai ≤ 1. The usual regularity estimate [16,19] for equation (4.14)
gives v ∈ H1

0 (Ω)∩H2(Ω). Then, by the triangle inequality, the regularity estimate
in Proposition 3.1, (2.10), and (4.14), we first have

∫
Ω

σ2+λ
z |ϑ1−�a∇2v|2dx ≤ C

(∫
Ω

ϑ2−2�a|∇2(σ
1+λ

2
z v)|2dx

+

∫
Ω

ϑ2−2�aσλ
z |∇v|2dx+

∫
Ω

ϑ2−2�aσλ−2
z v2dx

)

≤ C
(∫

Ω

ϑ2−2�aσ2+λ
z |Δv|2dx+

∫
Ω

ϑ2−2�aσλ
z |∇v|2dx+

∫
Ω

ϑ2−2�aσλ−2
z v2dx

)

≤ C
(∫

Ω

ϑ2−2�aσ2+λ
z |ν · ∇f |2dx+

∫
Ω

ϑ2−2�aσλ
z |∇v|2dx+

∫
Ω

ϑ2−2�aσλ−2
z v2dx

)
.(4.15)

For the second term in (4.15), by (4.14), (2.10), and Hölder’s inequality, we have

∫
Ω

ϑ2−2�aσλ
z |∇v|2dx =

∫
Ω

∇v · ∇(ϑ2−2�aσλ
z v)dx

−
∫
Ω

σλ
z v∇v · ∇(ϑ2−2�a)dx−

∫
Ω

ϑ2−2�av∇v · ∇(σλ
z )dx

≤
∫
Ω

ϑ2−2�aσλ
z v(ν · ∇f)dx

+(

∫
Ω

ϑ2−2�aσλ
z |∇v|2dx) 1

2 (

∫
Ω

ϑ2�a−2σλ
z |∇(ϑ2−2�a)|2v2dx) 1

2

+(

∫
Ω

ϑ2−2�aσλ
z |∇v|2dx) 1

2 (

∫
Ω

ϑ2−2�aσλ−2
z v2dx)

1
2 .

Thus, using Hölder’s inequality and Young’s inequality, for ε > 0 small, we have
∫
Ω

ϑ2−2�aσλ
z |∇v|2dx ≤ C

(∫
Ω

ϑ2−2�aσ2+λ
z |ν · ∇f |2dx+ 2ε

∫
Ω

ϑ2−2�aσλ
z |∇v|2dx

+ε−1

∫
Ω

ϑ2−2�aσλ−2
z v2dx+ ε−1

∫
Ω

ϑ2�a−2σλ
z |∇(ϑ2−2�a)|2v2dx

)
.

Therefore, we have
∫
Ω

ϑ2−2�aσλ
z |∇v|2dx ≤ C

(∫
Ω

ϑ2−2�aσ2+λ
z |ν · ∇f |2dx

+

∫
Ω

ϑ2−2�aσλ−2
z v2dx+

∫
Ω

ϑ2�a−2σλ
z |∇(ϑ2−2�a)|2v2dx

)
.(4.16)

In addition, by (2.10), Hölder’s inequality and Young’s inequality, we have for ε
small,

∫
Ω

ϑ2�a−2σλ
z |∇(ϑ2−2�a)|2v2dx ≤ C

∫
Ω

ϑ−2�aσλ
z v

2dx

≤ C(

∫
Ω

ϑ−2−2�aσ2+λ
z v2dx)

1
2 (

∫
Ω

ϑ2−2�aσλ−2
z v2dx)

1
2

≤ C
(
ε2

∫
Ω

ϑ−2−2�aσ2+λ
z v2dx+ ε−2

∫
Ω

ϑ2−2�aσλ−2
z v2dx

)
.(4.17)
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Using the regularity estimate in Proposition 3.1 for (σ
1+λ

2
z v), (4.14), and (2.10), we

have

ε2
∫
Ω

ϑ−2−2�a(σ
1+λ

2
z v)2dx ≤ Cε2(

∫
Ω

ϑ2−2�aσ2+λ
z |ν · ∇f |2dx

+

∫
Ω

ϑ2−2�aσλ
z |∇v|2dx+

∫
Ω

ϑ2−2�aσλ−2
z v2dx).(4.18)

Therefore, for ε sufficiently small, by (4.16), (4.17), and (4.18),

(4.19)

∫
Ω

ϑ2−2�aσλ
z |∇v|2dx ≤ C

(∫
Ω

ϑ2−2�aσ2+λ
z |ν · ∇f |2dx+

∫
Ω

ϑ2−2�aσλ−2
z v2dx

)
.

Hence, by (4.15) and (4.19),

(4.20)

∫
Ω

σ2+λ
z |ϑ1−�a∇2v|2dx ≤ C

(∫
Ω

ϑ2−2�aσ2+λ
z |ν·∇f |2dx+

∫
Ω

ϑ2−2�aσλ−2
z v2dx

)
.

Let p > 1 be such that 1/q + 1/p = 1. By Hölder’s inequality and Lemma 4.1, we
have ∫

Ω

ϑ2−2�aσλ−2
z v2dx ≤

( ∫
Ω

(ϑ2−2�aσλ−2
z )qdx

)1/q‖v‖2L2p(Ω)

≤ Ch2/q+λ
z N‖v‖2L2p(Ω).(4.21)

Let y ∈ H1
0 (Ω) be the solution of

−Δy = sign(v)|v|2p−1.

Let s = 2p/(p+ 1) and s′ = 2p/(p− 1). Then, by Hölder’s inequality, the Sobolev
embedding theorem, and Proposition 2.1, we have

‖v‖2pL2p(Ω) = (∇y,∇v) = (f, ν · ∇y) ≤ ‖f‖Ls(Ω)‖∇y‖Ls′ (Ω)

≤ C‖f‖Ls(Ω)‖y‖W 2
2p/(2p−1)

(Ω) ≤ C‖f‖Ls(Ω)‖v2p−1‖L2p/(2p−1)(Ω)

= C‖f‖Ls(Ω)‖v‖2p−1
L2p(Ω),

provided that 2p/(2p− 1) < η0. Note that the condition q(2amin − λ) > 2 implies
s < 4/(4−2amin+λ); the condition 2p/(2p−1) < η0 implies that s > 2η0/(3η0−2).
Since η0 > 2 on Ω and λ < 2amin, there is an open interval from which s can be
chosen to have the estimates above. Therefore, by Hölder’s inequality,

‖v‖L2p(Ω) ≤ C‖f‖Ls(Ω) ≤
( ∫

Ω

σ2+λ
z |f |2dx

) 1
2
( ∫

Ω

σ−(2+λ)s/(2−s)
z dx

) 2−s
2s

≤ C(thz)
4−4s−λs

2s

( ∫
Ω

σ2+λ
z |f |2dx

) 1
2 = C(thz)

−λ
2 −

1
q
( ∫

Ω

σ2+λ
z |f |2dx

) 1
2 .(4.22)

Combining (4.20)–(4.22), we complete the proof∫
Ω

σ2+λ
z |ϑ1−�a∇2v|2dx ≤ C

(∫
Ω

ϑ2−2�aσ2+λ
z |∇f |2dx+ t−λ− 2

q N

∫
Ω

σ2+λ
z |f |2dx

)
.

�

Remark 4.5. The key to the development of the regularity estimates in Lemmas
4.3 and 4.4 is the exploration of the intrinsic connection between the modified
Kondrat′ev weight function ϑ and the geometry of the graded mesh. This provides
the technical results needed for the stability analysis in the next section.
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5. Stability analysis

Our primary goal in this paper is to establish the stability result ‖un‖W 1
p (Ω) ≤

C‖u‖W 1
p (Ω) (Theorem 5.5) for equation (1.1), where un ∈ Sn is the finite element

solution in (2.2) on the graded mesh Tn (Definition 2.6).
As discussed in Remark 2.14, it is important to obtain an upper bound for

M = max
z∈Ω

(
(

∫
Ω

hλ

hλ
z

σ2+λ
z |∇(g − gn)|2dx)

1
2

)
.

We first have the approximation result below.

Lemma 5.1. Let g and gn be defined in (2.19) and (2.20). For λ > 0 and t > 1,
we have∫

Ω

σ2+λ
z |∇(g − gn)|2dx

≤ C
( ∫

Ω

σ2+λ
z |∇(g − gI)|2dx+

∫
Ω

σλ
z (g − gI)

2dx+

∫
Ω

σλ
z (g − gn)

2dx
)
,

where gI ∈ Sn is the nodal interpolation of g.

Proof. Define ψ := σ2+λ
z (gI −gn). Let ψI ∈ Sn be the nodal interpolation of ψ. By

(2.20), Hölder’s inequality and Young’s inequality, we have∫
Ω

σ2+λ
z |∇(g − gn)|2dx =

∫
Ω

∇(g − gn) ·
(
σ2+λ
z ∇(g − gI) +∇ψ

)
dx

≤
∫
Ω

|∇(g − gn)||σ2+λ
z ∇(g − gI)|dx+

∫
Ω

∇(g − gn) · ∇(ψ − ψI)dx

≤ (

∫
Ω

σ2+λ
z |∇(g − gn)|2dx)1/2(

∫
Ω

σ2+λ
z |∇(g − gI)|2dx)1/2

+(

∫
Ω

σ2+λ
z |∇(g − gn)|2dx)1/2(

∫
Ω

σ−2−λ
z |∇(ψ − ψI)|2dx)1/2

≤ C
( ∫

Ω

σ2+λ
z |∇(g − gI)|2dx+

∫
Ω

σ−2−λ
z |∇(ψ − ψI)|2dx

)
(5.1)

+
1

2

∫
Ω

σ2+λ
z |∇(g − gn)|2dx.

Let T ∈ Tn be a triangle and hT = diam(T ). Then, on T , by (2.7), the usual
interpolation error estimate, the definition of ψ, (2.10), and the inverse inequality,
we have∫

T

σ−2−λ
z |∇(ψ − ψI)|2dx ≤ max

x∈T
σ−2−λ
z (x)

∫
T

|∇(ψ − ψI)|2dx

≤ Cmin
x∈T

σ−2−λ
z (x)h2m

T

∫
T

|∇m+1ψ|2dx ≤ Ch2m
T

∫
T

σ−2−λ
z |∇m+1ψ|2dx

≤ C
∑

0≤s≤m

h2m
T

∫
T

σλ−2(m−s)
z |∇s(gI − gn)|2dx

≤ C
∑

0≤s≤m

h2m−2s
T

∫
T

σλ−2(m−s)
z |gI − gn|2dx ≤ C

∫
T

σλ
z |gI − gn|2dx.
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Therefore, ∫
Ω

σ−2−λ
z |∇(ψ − ψI)|2dx =

∑
T∈Tn

∫
T

σ−2−λ
z |∇(ψ − ψI)|2dx

≤ C

∫
Ω

σλ
z |gI − gn|2dx.(5.2)

By (5.1) and (5.2), we have∫
Ω

σ2+λ
z |∇(g − gn)|2dx ≤ C

( ∫
Ω

σ2+λ
z |∇(g − gI)|2dx+

∫
Ω

σλ
z (gI − gn)

2dx
)

≤ C
( ∫

Ω

σ2+λ
z |∇(g − gI)|2dx+

∫
Ω

σλ
z (g − gI)

2dx+

∫
Ω

σλ
z (g − gn)

2dx
)
.

This completes the proof. �

Now, we analyze the integral
∫
Ω
σλ
z (g − gn)

2dx from the last lemma.

Lemma 5.2. Let 0 < λ < min(2amin, 2− 4/η0). For any ε > 0, there exists t > 1,
such that for n sufficiently large,∫

Ω

σλ
z (g − gn)

2dx ≤ ε

∫
Ω

σ2+λ
z |∇(g − gn)|2dx.

Proof. Let v ∈ H1
0 (Ω) be the solution of −Δv = σλ

z (g − gn). Then, choosing q as
in Lemma 4.3, by Lemma 4.3 and (2.10), we have

(5.3)

∫
Ω

σ−2−λ
z |ϑ1−�a∇2v|2dx ≤ Ctλ−2q−1

N
( ∫

Ω

σ2+λ
z |∇(g−gn)|2+σλ

z (g−gn)
2dx

)
.

Using Hölder’s inequality, Proposition 3.2, Young’s inequality, and (5.3), we have∫
Ω

σλ
z (g − gn)

2dx =

∫
Ω

∇(v − vI) · ∇(g − gn)dx

≤
( ∫

Ω

σ−2−λ
z |∇(v − vI)|2dx

) 1
2
( ∫

Ω

σ2+λ
z |∇(g − gn)|2dx

) 1
2

≤ CN− 1
2

( ∫
Ω

σ−2−λ
z |ϑ1−�a∇2v|2dx

) 1
2
( ∫

Ω

σ2+λ
z |∇(g − gn)|2dx

) 1
2

≤ Cε−1N−1

∫
Ω

σ−2−λ
z |ϑ1−�a∇2v|2dx+

ε

2

∫
Ω

σ2+λ
z |∇(g − gn)|2dx

≤ Ctλ−2q−1

ε−1
( ∫

Ω

σ2+λ
z |∇(g − gn)|2 + σλ

z (g − gn)
2dx

)

+
ε

2

∫
Ω

σ2+λ
z |∇(g − gn)|2dx.

Recall from Lemma 4.3 that λq < 2. Therefore, λ−2q−1 < 0. Thus, we can choose
t large enough, such that∫

Ω

σλ
z (g − gn)

2dx ≤ ε

∫
Ω

σ2+λ
z |∇(g − gn)|2dx,

which completes the proof. �
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We are ready to obtain the stability result for 2 ≤ p ≤ ∞.

Lemma 5.3. For 2 ≤ p ≤ ∞ and n sufficiently large, we have

‖∇un‖Lp(Ω) ≤ C‖∇u‖Lp(Ω),

where C is independent of n.

Proof. Recall M = maxz∈Ω

(
(
∫
Ω

hλ

hλ
z
σ2+λ
z |∇(g − gn)|2dx)

1
2

)
from Lemma 2.13. Let

0 < λ < min(2amin, 2−4/η0). Choose q > 1 such that q(2amin−λ) > 2. By Lemma
5.1, Lemma 5.2, Proposition 3.2, and Lemma 4.4, we have∫

Ω

hλ

hλ
z

σ2+λ
z |∇(g − gn)|2dx ≤ C

hλ

hλ
z

( ∫
Ω

σ2+λ
z |∇(g − gI)|2 + σλ

z (g − gI)
2

+σλ
z (g − gn)

2dx
)

≤ C
hλ

hλ
z

( ∫
Ω

σ2+λ
z |∇(g − gI)|2 + σλ

z (g − gI)
2
)

≤ CN−1h
λ

hλ
z

∫
Ω

σ2+λ
z |ϑ1−�a∇2g|2dx

≤ C
(
N−1 h

λ

hλ
z

∫
Ω

σ2+λ
z |ϑ1−�a∇δz|2dx+ t−λ−2q−1 hλ

hλ
z

∫
Ω

σλ+2
z |δz|2dx

)
.(5.4)

Recall Li,j from Definition 2.8. If Tz ∈ Li,j , for 0 ≤ j ≤ n, since ϑ � κj
i on Tz, by

(2.8), (2.5), and (2.3), we have

N−1h
λ

hλ
z

∫
Ω

σ2+λ
z |ϑ1−�a∇δz|2dx+ t−λ−2q−1 hλ

hλ
z

∫
Ω

σλ+2
z |δz|2dx

≤ Chλ(N−1h−2
z κ

j(2−2ai)
i + 1)

≤ Chλ(2−2n22n−2jκ−2jai

i + 1) ≤ Chλ.(5.5)

If Tz ∈ Ω0 = Ω \ (
⋃

i Ti,0), ϑ|Tz
= O(1) and hz � 2−n. Then, we similarly have

N−1 h
λ

hλ
z

∫
Ω

σ2+λ
z |ϑ1−�a∇δz|2dx+ t−λ−2q−1 hλ

hλ
z

∫
Ω

σλ+2
z |δz|2dx

≤ Chλ(N−1h−2
z + 1) ≤ Chλ.(5.6)

Then, by Lemma 2.13, (5.4), (5.5), and (5.6), we have for 2 < p ≤ ∞,

‖∇un‖Lp(Ω) ≤ C‖∇u‖Lp(Ω)(1 + h−λ
2 h

λ
2 ) ≤ C‖∇u‖Lp(Ω).

It remains to show the lemma for p = 2. This is the case by

‖∇un‖2L2Ω) = (∇un,∇un) = (∇u,∇un) ≤ ‖∇un‖L2(Ω)‖∇u‖L2(Ω).

Thus, the proof is completed. �

To extend the stability result in Lemma 5.3 to the full W 1
p (Ω)-norm of un, we

first need an upper bound for the finite element solution in Lp(Ω).

Lemma 5.4. For 1 < p ≤ ∞ and n sufficiently large, we have

‖un‖Lp(Ω) ≤ C‖u‖W 1
p (Ω).
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Proof. For p ≥ 2, the result follows from the Poincaré inequality and Lemma 5.3.
We now show the proof for 1 < p < 2.

Let w ∈ H1
0 (Ω) be the solution of

−Δw = sign(un)|un|p−1 in Ω,

and wn ∈ Sn be its finite element solution. Let q > 2, such that 1/p+1/q = 1. Let
1/r = 1/q + 1/2, and therefore 1 < r < 2. Then, by Hölder’s inequality, Lemma
5.3, the Sobolev embedding theorem, and Proposition 2.1,

‖un‖pLp(Ω) = (∇un,∇w) = (∇un,∇wn) = (∇u,∇wn)

≤ ‖∇u‖Lp(Ω)‖∇wn‖Lq(Ω) ≤ C‖∇u‖Lp(Ω)‖∇w‖Lq(Ω)

≤ C‖∇u‖Lp(Ω)‖w‖W 2
r (Ω) ≤ C‖∇u‖Lp(Ω)‖|un|p−1‖Lr(Ω)

≤ C‖∇u‖Lp(Ω)‖|un|p−1‖Lq(Ω) = C‖∇u‖Lp(Ω)‖un‖p−1
Lp(Ω).

The lemma is hence proved. �

Thus, we have the main stability result for the finite element solution un ∈ Sn

of equation (1.1) on the graded mesh Tn.

Theorem 5.5. For 1 < p ≤ ∞ and n sufficiently large, we have

‖un‖W 1
p (Ω) ≤ C‖u‖W 1

p (Ω),

where C is independent of n.

Proof. Using Lemma 5.3 and Lemma 5.4, we obtain the expected estimate for
2 ≤ p ≤ ∞. Therefore, it suffices to prove the case 1 < p < 2. By Theorem 4.32 in
[27], Lemma 5.3, and Lemma 5.4, for 1/p+ 1/q = 1 and any 0 �= v ∈ {v ∈ W 1

q (Ω) :
v|∂Ω = 0}, we have

‖un‖W 1
p (Ω) ≤ C

(
sup
v

a(un, v)

‖v‖W 1
q (Ω)

+ ‖un‖Lp(Ω)

)
= C

(
sup
v

a(un, vn)

‖v‖W 1
q (Ω)

+ ‖un‖Lp(Ω)

)

= C
(
sup
v

a(u, vn)

‖v‖W 1
q (Ω)

+ ‖un‖Lp(Ω)

)
≤ C‖u‖W 1

p (Ω),

where vn ∈ Sn is the finite element approximation of v. This completes the proof.
�

As a direct consequence of Theorem 5.5, we derive the following approximation
property for the finite element solution in non-energy norms.

Corollary 5.6. For 1 < p ≤ ∞ and n sufficiently large, we have

‖u− un‖W 1
p (Ω) ≤ C inf

v∈Sn

‖u− v‖W 1
p (Ω).(5.7)

For 1 < p < ∞, let q = p/(p− 1). For u ∈ Lp(Ω), let w ∈ W 1
q (Ω) ∩ {w|∂Ω = 0} be

the solution of

−Δw = sign(u− un)|u− un|p−1 in Ω.(5.8)

Then,

(5.9) ‖u− un‖pLp(Ω) ≤ C
(

inf
v1∈Sn

‖u− v1‖W 1
p (Ω)

)(
inf

v2∈Sn

‖w − v2‖W 1
q (Ω)

)
.
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Proof. (5.7) is a direct consequence of Theorem 5.5. For any v ∈ Sn,

‖u− un‖W 1
p (Ω) ≤ ‖u− v‖W 1

p (Ω) + ‖v − un‖W 1
p (Ω) ≤ C‖u− v‖W 1

p (Ω).

To show (5.9), we first verify the solution of (5.8) w ∈ W 1
q (Ω) for any 1 < p < ∞.

For p ≥ 2, 1 < q < 2. Therefore, by Proposition 2.1,

‖w‖W 1
q (Ω) ≤ ‖w‖W 2

q (Ω) ≤ C‖|u− un|p−1‖Lq(Ω) = C‖u− un‖p−1
Lp(Ω).

For 1 < p < 2, let 1 < r < 2 be such that 1/r = 1/q + 1/2. Using the Sobolev
embedding theorem, Proposition 2.1, and Hölder’s inequality,

‖w‖W 1
q (Ω) ≤ ‖w‖W 2

r (Ω) ≤ C‖|u− un|p−1‖Lr(Ω)

≤ C‖|u− un|p−1‖Lq(Ω) = C‖u− un‖p−1
Lp(Ω).

Therefore, w ∈ W 1
q (Ω) for 1 < p < ∞. Then, for any v1, v2 ∈ Sn, (5.9) follows

immediately from (5.8) and (5.7):

‖u− un‖pLp(Ω) = a(w, u− un) = a(w − v2, u− un)

≤ ‖w − v2‖W 1
q (Ω)‖u− un‖W 1

p (Ω) ≤ C‖w − v2‖W 1
q (Ω)‖u− v1‖W 1

p (Ω).

�

Remark 5.7. Corollary 5.6 concerns the approximation property of the finite ele-
ment solution in the spaces W 1

p (1 < p ≤ ∞) and in Lp (1 < p < ∞). Using the
weighted technique in (modified) Kondrat′ev spaces, we expect these approxima-
tion results will help develop specific graded meshes that lead to optimal rate of
convergence in these non-energy norms. See [3, 4, 6, 23, 25, 31] and the references
therein for the design of optimal graded meshes in energy norms. Note that the
estimate in L∞ needs further effort, partially due to the lack of regularity in the
L1 space. We refer to [2] for an L∞ error estimate on graded meshes.

6. Concluding remarks

In this paper, we developed analytical tools in weighted spaces and proved the
stability result

(6.1) ‖un‖W 1
p (Ω) ≤ C‖u‖W 1

p (Ω), 1 < p ≤ ∞,

for the finite element approximation of the model problem (1.1) on a family of
graded meshes. This further led to the error analysis (Corollary 5.6) in non-energy
norms. To obtain the resu, we introduced a new weight function to replace the
conventional weight in the Kondrat′ev space. This modified weighted space offers
not only needed regularity results, but also good approximation properties for the
finite element analysis. The intrinsic connection between the new weight and the
mesh grading property was studied in detail and played a key role in the analysis.
The stability result in (6.1) excludes the case for W 1

1 , because the duality argument
in the proof of Theorem 5.5 does not hold for p = 1.

The result in this paper has several foreseeable important extensions for finite
element approximations of elliptic problems. With the interpolation error estimates
in [18] for functions of ρλ type and the stability estimate (6.1), we expect the
development of optimal 2D graded meshes in non-energy norms. Our weighted
analysis extends to 3D convex polyhedral domains with isotropic graded meshes
for vertex singularities, which we shall include in an forthcoming paper. We also
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expect our work will lead to new ideas for stability analysis on 3D anisotropic
meshes.

Note that theW 1
p stability on non-convex domains is still an open problem; it has

been difficult due to the lack of regularity in Sobolev norms. We hope the weighted
analysis developed in this paper can be helpful to motivate new techniques in this
direction.
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[3] T. Apel, A.-M. Sändig, and J. R. Whiteman, Graded mesh refinement and error es-
timates for finite element solutions of elliptic boundary value problems in non-smooth
domains, Math. Methods Appl. Sci. 19 (1996), no. 1, 63–85, DOI 10.1002/(SICI)1099-
1476(19960110)19:1〈63::AID-MMA764〉3.0.CO;2-S. MR1365264 (96h:65144)
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