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a b s t r a c t

Meshfree methods based on radial basis functions (RBFs) are of general interest for solving
partial differential equations (PDEs) because they can provide high order or spectral
convergence for smooth solutions in complex geometries. For global RBF methods, one of
themajor disadvantages is the computational cost associatedwith the dense linear systems
that arise. Therefore, this paper is currently directed toward localized RBF approximations
known as the RBF partition of unity (RBF-PU) method for partial integro-differential equa-
tion (PIDE) arisen in option pricing problems in jump–diffusion model. RBF-PU method
produces algebraic systemswith sparsematriceswhich have small condition number. Also,
for comparison, some stable time discretization schemes are combined with the operator
splitting method to get a fully discrete problem. Numerical examples are presented to
illustrate the convergence and stability of the proposed algorithms for pricing European
and American options with Merton and Kou models.

Published by Elsevier B.V.

1. Introduction

The Black–Scholes [1] and stochastic volatilitymodels [2] are examples of diffusionmodels, where the sample paths of the
process are continuous. Stochastic volatility models are able to generate heavy tails in the return distribution for larger time
intervals, which is a result of the accumulation of small moves over a sufficiently long time. However, large sudden changes
under diffusion models are next to impossible. The addition of jumps into the model generates heavy tails in returns for
short time intervals, and allows large sudden changes in the underlying asset. This is particularly important from a risk
management perspective, since the implication is that large losses are possible even in a short time interval. Similarly, as in
the case of stochastic volatility, markets under jump–diffusion models are incomplete.

It is recognized that the assumption of log normal stock diffusion with constant volatility in derivation of Black–Scholes
model for pricing option is not consistent with real stock price behavior. Jumps are regularly observed in the discrete
movement of stock price and these jumps cannot be captured by the log normal distribution characteristic of the stock price
in the Black–Scholes model. Therefore an alternative model is necessary to overcome these issues. To resolve these issues
several models have been proposed in the literature. Among these, the jump– diffusionmodel introduced byMerton [3] and
Kou [4] is one of the most used model. Merton proposed a log-normally distributed process for the jump-amplitudes, while
Kou suggested logdouble-exponentially distributed process. Thesemodels have finite jump activity, unlike themore general
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approach with possibly infinite jump activity proposed in [5]. Another approach is to consider stochastic volatility models
with jumps. The model proposed by Bates in [6] with jumps only in the value of the underlying asset is an example of such
an approach. More general jump–diffusion models with stochastic volatility are considered in [7], for example.

In a pricing model where the underlying asset follows a Markov process with infinitesimal generator L, the value V (t, S)
as a function of the time t and the underlying asset price S solves Kolmogorov backward equation

∂V (t, S)
∂t

+ LV (t, S) = 0 (1)

with appropriate boundary conditions which describe the payoff of the option. In the case of the Black–Scholes model, this
pricing equation reduces to the Black–Scholes partial differential equation whose analytical solution leads to the famous
Black–Scholes formula. When the random evolution of the underlying asset is driven by a Lévy process or more generally a
time inhomogeneous jump–diffusion process, the operator L is an integro-differential operator, expressed as the sum of a
second-order differential operator and an integral operator, and Eq. (1) becomes a partial integro-differential equation [8].

Except in the Black–Scholes model with constant volatility, solutions to option pricing problems are not known
analytically in general and require numericalmethods. A variety of techniques have beenproposed to solve pricing equations.
In the financial literature several numerical approaches have been proposed for pricing options under both models with
stochastic volatility and models with jumps. In particular, in the case of models with jumps, we can mention the paper by
Matache et al. [9], where a Galerkin discretization in logarithmic price using a wavelet basis is presented. Also, in [10], they
develop an alternating direction implicit (ADI) finite difference method that is shown to be unconditionally stable and, if
combined with Fast Fourier Transform (FFT) methods, the method is computationally efficient. An explicit–implicit finite
difference scheme is used in [11] to price European and barrier options in jump–diffusion and exponential Lévy Models.
In the paper by Forsyth et al. [12], an implicit discretization method is presented for pricing such American options. The
jump– diffusion correlation integral term is computed using an iterative method coupled with an FFT while the American
constraint is imposed by using a penalty method. In papers by Fang and Oosterlee [13,14], they present a pricing method
based on Fourier-cosine expansions for American and European options.

Other numerical methods which we can mention are for examples in [15] authors proposed an unconditionally stable
ADI method for its solution. Also, in [16] a fitted finite volume method for jump–diffusion process has been employed.
Their method is based on fitted finite volume method spatial discretization and Crank– Nicolson scheme for temporal
discretization was developed. Recently in [17,18] authors developed an efficient method for pricing Merton jump–diffusion
option, combining the spectral domain decomposition method and the Laplace transform method.

Inmodels with jumps, the non local integral term leads to densematrices after discretization [11] and efficient numerical
methods are required for pricing of complex contracts and for calibration of model parameters. This fact means that fully
implicit schemes encounter difficulties such as dense matrix inversions whereas fully explicit schemes impose stability
restrictions [19]. For some solutions to this problem in [20,21] authors have used an iterative procedure for solving the
discretized equations, and more efficient approaches using implicit–explicit Runge–Kutta schemes which treat the integral
term explicitly were later proposed by Cont and Voltchkova in [11] and by Briani et al. [19].

Meshfree methods based on radial basis functions (RBFs) are widely used for solving PDEs because they can provide
spectral convergence for smooth solutions in complex geometries. In [22,23],meshfreemethods based onRBF approximation
have been shown to perform better than finite difference methods for option pricing problems in one and two spatial
dimensions. Similar problems have also been solved in [24]. Forward Kolmogorov problems have been solved in [25,26] with
promising results. However, all of these papers employ global RBF collocationmethods, leading to dense linear systems, and
computational costs that become prohibitive as the number of dimensions increase. In order to address the computational
cost issues of the global RBF method, we need to introduce locality. An easy way to do that is to use compactly supported
RBFs, such as the Wendland functions [27], but then the spectral convergence properties are lost.

Here we take another approach, where the infinitely smooth RBFs are still used in the approximation but over local
subregions of the computational domain. The possibility of using RBFs in a partition of unity scheme was mentioned
in [28], further discussed in [29], implemented for interpolation on the sphere, in the plane, and in three-dimensional
space in [30,31]. RBF-PU method is considered for parabolic PDEs of convection–diffusion type in [32], and stability and
accuracy of RBF-PU method are investigated partly theoretically and partly numerically. In [33], we price American options
under Heston’s stochastic volatility model using RBF-PU method applied to a linear complementary formulation of the free
boundary partial differential equation problem. Also, for pricing options under regime switching model, we applied local
RBF method based on finite difference method, and derived an stable and well-conditioned discretized system of equations
in [34].

In this paper, we develop a RBF-PU based algorithm for numerically pricing European and American options under
jump– diffusion model and study on the accuracy and efficiency of the proposed algorithm. After space discretization by
using RBF-PU approximation, for European option, Crank–Nicolson, Leap-Frog (CNLF), Crank–Nicolson, Adams–Bashforth
(CNAB) and Backward-difference formula of second order (BDF-2) schemes are employed for time discretization, also for
American option these time step schemes are combined with an operator splitting technique [35] which is applied to the
linear complementarity problem (LCP). In Section 2, a partial integro-differential equation for pricing European options and a
linear complementary problem for pricing the American options are introduced. In Sections 3 and 4, the basics of radial basis
functions, the partition of unity method based on RBFs and the convergence results of RBF-PU approximation are presented.
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In Section 5, differential and integral operators are introduced to our problem and their discretization are given. In Section 6,
time discretization with CNLF, CNAB, and BDF-2 schemes are applied to European options, and these schemes are combined
with the operator splitting method for evaluation of American options. The stability of these schemes are also discussed.
Finally, in Section 7, the accuracy and efficiency of the proposed method are numerically investigated for European and
American put options.

2. Option pricing model

Let (St )t∈[0,T ] be the stock price process in financialmarket on a probability space (Ω,F,Ft ,P)with filtrationFt . Under the
assumption of no-arbitrage there exists a measureQ equivalent to P under which (e−rtSt ) is a martingale where r is interest
rate. In exponential jump–diffusion models, the stock price process of (St ) under Q is represented as the exponential of a
jump–diffusion process St = S0 exp(rt + Xt ) where Xt is a jump–diffusion process defined by

Xt = bt + σWt +

Nt∑
i=1

Yi,

where b and σ > 0 are real constants, Yi are independent and identically distributed random variables, and Wt ,Nt , and Yi
are mutually independent.

Now, let Vt be a European put option price process under the risk-neutral measure Q defined by

Vt = E[e−r(T−t)G(ST )|Ft ],

where E[·] is the expectation operator and G(ST ) = max(K − ST , 0) is a payoff function, K is the strike price, and T is the
time of maturity. By the Markov property, we have the identity Vt = V (t, St ), where

V (t, St ) = E[e−r(T−t)G(ST )|St = S],

and leads to PIDE

∂V
∂t

(t, S) +
1
2
(σ (t, S)S)2

∂2V
∂S2

(t, S) + rS
∂V
∂S

(t, S) − rV (t, S)

+ λ

∫
∞

−∞

[
V (t, Sey) − V (t, S) − S(ey − 1)

∂V
∂S

(t, S)
]
f (y)dy = 0

on [0, T ) × (0,∞), where σ (t, S) is the known local volatility function, and PIDE satisfies the end condition

V (T , S) = G(S), S > 0.

By using transformations S = Kex and t = T − τ , and let u(τ , x) = V (T − τ , Kex) and σ̃ (τ , x) = σ (T − τ , Kex) so
computation of the option value requires solving the following PIDE

∂u
∂τ

= Lu =
1
2
σ̃ 2 ∂

2u
∂x2

+ (r −
σ̃ 2

2
− λκ)

∂u
∂x

− (r + λ)u + λ

∫
∞

−∞

u(τ , y)f (y − x)dy (2)

on (0, T ] × (−∞,∞) with constant coefficients, and the initial condition

u(0, x) = H(x), for x ∈ (−∞,∞) (3)

where H(x) = G(Kex), λ is the intensity of jumps, κ =
∫

∞

−∞
(ey − 1)f (y)dy, and f (y) is a density function.

In this paper, we focus on two popular jump–diffusion models with finite activity, Merton [3] and Kou [4] model. The
jump size in Merton model follows a lognormal distribution and for Kou model jump size follows a double exponential
distribution. Hence, the density function and corresponding mean are respectively given by

Merton: f (y) =
1

γ
√
2π

exp
(

−
(y − µ)2

2γ 2

)
κ = exp(µ+

γ 2

2
) − 1, (4)

Kou: f (y) = pα1e−α1yH(y) + (1 − p)α2eα2yH(−y) κ = p
α1

α1 − 1
+ (1 − p)

α2

α2 + 1
− 1, (5)

with γ > 0, µ ∈ R, α1 > 1, α2 > 0, 0 < p < 1 and H(·) is the Heaviside function.
The asymptotic behavior of the European put option is defined by

lim
x→−∞

[u(τ , x) − (Ke−rt
− Kex)] = 0, lim

x→∞
u(τ , x) = 0.

In the following, we will give a PIDE formulation to price an American option under jump–diffusion model. An American
option has the early exercise feature, so the optimal exercise boundary is a free boundary and separates the stopping and
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Table 1
Some well-known functions that generate globally supported RBFs.

Function name Definition

Gaussian (GA) exp(−ϵ2r2)

Multiquadrics (MQ)
√
1 + (ϵr)2

Inverse multiquadrics (IMQ) 1√
1+(ϵr)2

Conical splines r2k+1

Thin plate splines (TPS) (−1)k+1r2k log(r)

continuation region. Let V (t, S) denote the fair value of an American option at time t if the asset price at that time is St = S,
so V (S, t) satisfy the following free boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V
∂t

(t, S) +
1
2
(σ (t, S)S)2

∂2V
∂S2

(t, S) + rS
∂V
∂S

(t, S) − rV (t, S)

S > Sf (t)

+ λ

∫
∞

−∞

[
V (t, Sey) − V (t, S) − S(ey − 1)

∂V
∂S

(t, S)
]
f (y)dy = 0,

V (t, S) = G(S), 0 ≤ S ≤ Sf (t)

(6)

where G(S) is the payoff function, and Sf (t) denotes as an unknown free moving exercise boundary of the option. Similar to
European case, by using transformations S = Kex and t = T − τ , and let u(τ , x) = V (T − τ , Kex) and σ̃ (τ , x) = σ (T − τ , Kex),
so solving (6) and computation of the American option value requires solving the following linear complementary problem
(LCP) [36]⎧⎨⎩

uτ (τ , x) − Lu(τ , x) ≥ 0,
u(τ , x) ≥ H(x),
(ut (τ , x) − Lu(τ , x))(u(τ , x) − H(x)) = 0,

(7)

for all (τ , x) ∈ (0, T ] × (−∞,∞), and Lu(τ , x) and H(x) are defined by (2) and (3).
In this case, we impose in addition the following initial and boundary conditions

u(0, x) = H(x). (8)

lim
x→−∞

u(τ , x) = K , lim
x→∞

u(τ , x) = 0. (9)

3. RBF approximation

To avoid mesh generation, in recent years meshless techniques have attracted the attention of researchers. In a meshless
method a set of scattered nodes is used instead of meshing the domain of the problem. The technique of RBFs is one of the
most recently developed meshless methods that has attracted attention of many researchers in recent years. No need for a
mesh or triangulation, simple implementation of boundary conditions anddimension independence are themain advantages
of RBF methods.

Let φ : Ω × Ω → R be a kernel with the property φ(x, y) := φ(∥x − y∥) for x, y ∈ Ω , and ∥ · ∥ is the Euclidean norm.
Kernelswith this property known as radial functions. In Table 1 some globally supported RBFs are listedwhich are commonly
employed in the literature. The positive constant ϵ appearing in RBFs is called the shape parameterwhich dictates the flatness
of the radial basis function and also has a key role on the convergence rate of the approximations and the condition number
of the coefficientmatrices. Formore details about basic properties and types of radial basis functions, compactly and globally
supported and also their wide applications in scattered date interpolations, the interested readerwould be referred to recent
works in this topic [37–40].

Now, letΩ ⊂ Rd as a spatial domain, and consider a set of distinct points X = {x1, x2, . . . , xN} inΩ . The RBF interpolant
for a continuous target function u : Ω → R known at the nodes in X takes the form

su(x) =

N∑
j=1

λjφ(∥x − xj∥). (10)

The interpolation coefficients are determined by collocating the interpolant su(x) to satisfy the interpolation condition
su(xi) = u(xi) for i = 1, 2, . . . ,N . This results in a symmetric system of linear equations

Aλ = u, (11)
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where the elements of A are ai,j = φ(∥xi − xj∥), λ = [λ1, λ2, . . . , λN ]
⊤ (here ⊤ means transpose) and u = [u(x1), u(x2), . . .

, u(xN )]⊤.
When the points in X are chosen to be distinct and φ is a positive definite or an order one conditionally positive definite

on Rd, the coefficient matrix A is guaranteed to be nonsingular, see [41]. For a nonsingular coefficient matrix A, solving (11)
for λ and substituting in (10) leads to

su(x) = Φ(x)A−1u (12)

withΦ(x) = [φ(∥x − x1∥), φ(∥x − x2∥), . . . , φ(∥x − xN∥)].
For simple implementation of the boundary conditions for PDEs, it is preferable to express the interpolation in Lagrange

form, i.e., using cardinal basis functions. The cardinal basis functions, ψj(x), j = 1, 2, . . . ,N , have the property

ψj(xi) =

{
1, i = j
0, i ̸= j

i = 1, 2, . . . ,N, (13)

leading to the alternative formulation for the interpolant

su(x) = Ψ (x)u, (14)

where Ψ (x) = [ψ1(x), ψ2(x), . . . , ψN (x)].
Comparing (12) and (14), it is clear that the following relation holds between the cardinal basis and the original radial

basis:

Ψ (x) = Φ(x)A−1. (15)

When we approximate a time dependent function u(t, x) that is a solution to a PDE problem, we let λj, j = 1, 2, . . . ,N ,
be time dependent such that

su(t, x) =

N∑
j=1

λj(t)φ(∥x − xj∥), x ∈ Ω, t ≥ 0,

or, equivalently, when using the Lagrange form, we use the interpolant

su(t, x) =

N∑
j=1

ψj(x)uj(t) = Φ(x)A−1u(t). (16)

By interpolating the initial condition (or a final condition) such that u(0) = [u(0, x1), u(0, x2), . . . , u(0, xN )]T we get
su,X (0, xk) = u(0, xk) for all k, while for t > 0wehaveu(t) ≈ [u(t, x1), u(t, x2), . . . , u(t, xN )]T and hence su,X (t, xk) ≈ u(t, xk)
for all k.

4. Approximation based on RBF-PU method

Approximation based on global RBFs has many advantages but generally it leads to dense and ill conditioned coefficient
matrices, hence complexity of computations is expensive. In this section we introduce RBF-PU method which is one of the
local methods and put a set of local approximation spaces together to produce a conforming global approximation.

LetΩ ⊂ Rd be a bounded set, and let a covering {Ωj}
M
j=1 of the regionΩ such thatΩ ⊂

⋃M
j=1Ωj. Also, we define

∀x ∈ Ω I(x) := {j | x ∈ Ωj}, card(I(x)) ≤ K ,

where the constant K is independent of the number of patchesM .

Definition 1. LetΩ ⊂ Rd be a bounded set. Let {Ωj}
M
j=1 be an open and bounded covering ofΩ . This means allΩj are open

and bounded andΩ is contained in their union. Set δj = diam(Ωj) = supx,y∈Ωj
∥x − y∥2. A family of non-negative functions

{wj(x)}Mj=1 with wj(x) ∈ Ck(Rd) is a k-stable partition of unity respect to cover ofΩj if:

1. supp(wj) ⊆ Ω j
2.

∑
jwj(x) = 1 for x ∈ Ω

3. For every α ∈ Nd
0 with |α| ≤ k there exist a constant Cα > 0 such that for all 1 ≤ j ≤ M

∥Dαwj∥L∞(Ωj) ≤
Cα
δ

|α|

j
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The weight functions wj are constructed by using Shepard’s method [42] as follow:

wj(x) =
φj(x)∑

k∈I(x) φk(x)
, j = 1, 2, . . . ,M (17)

where φj(x) are compactly supported functions with support on Ωj. To guarantee non-negativity and compact support in
Ωj, we define in (17)

φj(x) = φ

(
∥x − cj∥

rj

)
, j = 1, 2, . . . ,M, (18)

where {cj}Mj=1 and {rj}Mj=1 are the centers and radiuses of the circular, spherical or hyper-spherical patches {Ωj}
M
j=1 and where

φ is one of the compactly supported functions with minimal degree described in [27, Corollary 9.14]. Here we consider the
Wendland compact supported function [41]

φ(r) = (1 − r)4
+
(4r + 1),

which belongs to C2 for the construction of the weight functions.
The global approximation function su(x), with x ∈ Ω , to the function u(x) is constructed as

su(x) =

M∑
j=1

wj(x)su,j(x) =

∑
j∈I(x)

wj(x)su,j(x),

where su,j are local interpolants such that su,j(xi) = u(xi) for each node xi ∈ Ωj. Then, the global PU approximant inherits
the interpolation property, i.e. su(xi) = u(xi). Using the cardinal basis functions (13) the local interpolant su,j(x) is an RBF-
approximant of type (14) onΩj.

For time dependent function u(t, x), we construct the global approximant built up from local RBF interpolants of type
(16). For j ∈ {1, . . . ,M}, let J(Ωj) := {k | xk ∈ Ωj} be the set of indices of the node points that belong to the patch Ωj. For
such patchΩj, the local RBF approximation is given by

su,j(t, x) =

∑
k∈J(Ωj)

ψk(x)uk(t)

where su,j(t, xk) = uk(t) for all nodes xk ∈ Ωj and ψk are cardinal basis functions. Hence, in the RBF-PUM, we obtain the
global approximant for the time-dependent function u(t, x)

su(t, x) =

∑
j∈I(x)

wj(x)su,j(t, x) =

∑
j∈I(x)

∑
k∈J(Ωj)

wj(x)ψk(x)uk(t). (19)

Now, for deriving an error estimation for partition of unity method, we need the following definitions

Definition 2. For a bounded regionΩ fill distance on X = {x1, x2, . . . , xN} define as following

hX,Ω = sup
x∈Ω

min
xj∈X

∥x − xj∥2,

which can be explained as largest distance that for every x ∈ Ω there is one point xj with this distance.

Definition 3. A subdomainΩj ⊆ Rd satisfies an interior cone condition if there exists an angle θ ∈ (0, π2 ) and a radius γ > 0
such that, for all x ∈ Ωj, a unit vector ξ (x) exists such that the cone

C(x, ξ (x), θ, γ ) = {x + λy : y ∈ Rd, ∥y∥2 = 1, yT ξ (x) ≥ cos(θ ), λ ∈ [0, γ ]}

is contained inΩj.

Definition 4. SupposeΩ ⊆ Rd is bounded and X = {x1, x2, . . . , xN} ⊆ Rd are given. An open and bounded covering {Ωj}
M
j=1

is called regular for (X,Ω) if the following properties are satisfied

1. For each x ∈ Ω , the number of subdomainsΩj, with x ∈ Ωj is bounded by a global constant C ,
2. Each subdomainΩj satisfies an interior cone condition,
3. The local fill distances hXNj ,Ωj are uniformly bounded by the global fill distance hX,Ω .

For each positive definite function φ ∈ Ck(Rd) and each area Ω ⊂ Rd there is a function space Nφ(Ω), the native
Hilbert space [43]. The smoothness of φ inherited from the native space via Nφ(Ω) ⊆ C [

k
2 ](Ω). Also, for getting the full

approximation order, the weak form of Holder continuity idea is used, and we define space Ck
v (R

d) as space of all functions
such that their derivatives of order k satisfy Dαu(x) = O(∥x∥v2) for ∥x∥2 → 0. By using the above definitions the following
convergence theorem is derived from [41].
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Theorem 1. Suppose φ ∈ Ck
v (R

d) is conditionally positive definite of order m, also, let Ω ⊆ Rd be open and bounded and
X = {x1, x2, . . . , xN} ⊆ Ω . Let {Ωj}

M
j=1 be a regular covering for (Ω, X) and let {wj}

M
j=1 be k-stable for {Ωj}

M
j=1. Then the error

between u ∈ Nφ(Ω) and its partition of unity interpolant is bounded by

|Dαu(x) − Dαsu(x)| ≤ C1h
k+v
2 −|α|

X,Ω |u|Nφ (Ω)

for all x ∈ Ω and all |α| ≤
k
2 .

5. Spatial discretization

The first step in this direction is to split the PIDE operator L into two parts as follows

Lu(τ , x) = Du(τ , x) + λ(Iu(τ , x) − u(τ , x)),

where D is a differential operator and I is an integral operator defined by

Du(τ , x) =
1
2
σ̃ 2 ∂

2u
∂x2

+ (r −
σ̃ 2

2
− λκ)

∂u
∂x

− ru

Iu(τ , x) =

∫
∞

−∞

u(τ , y)f (y − x)dy.

To use the RBF-PU approximation for solving a PIDE problem (2), we need to compute the effect of applying a spatial
differential operatorD at the interior node points. Using Leibniz’s rule, a derivative termof orderα in the differential operator
can be applied to the global approximation (19) as

∂ |α|

∂xα
u(τ , x) =

∑
i∈I(x)

∑
k∈J(Ωi)

∂ |α|

∂xα
[wi(x)ψk(x)] uk(τ )

=

∑
i∈I(x)

∑
k∈J(Ωi)

⎡⎣∑
β≤α

(
α

β

)
∂ |α−β|

∂xα−β
wi(x)

∂ |β|

∂xβ
ψk(x)

⎤⎦ uk(τ ). (20)

For composite linear operators like D, we sum up the contributions from each term, and denote the global differentiation
matrix under operator D by D.

To approximate the integral operator I numerically, we replace the unbounded domain (−∞,∞) for x with a bounded
oneΩ = [xmin, xmax]where the values xmin and xmax will be chosen based on standard financial arguments, and zero belongs
to [xmin, xmax]. So, we divide the integral into two parts onΩ and R \Ω , so we have

Iu(τ , x) =

∫
Ω

u(τ , y)f (y − x)dy +

∫
R\Ω

u(τ , y)f (y − x)dy. (21)

We define R(τ , x) =
∫
R\Ω

u(τ , y)f (y−x)dy and by using the boundary conditions for European put optionwe can calculate
R(τ , x) by

R(τ , x) =

∫
R\Ω

(Ke−rτ
− Key)f (y − x)dy,

where for Merton model we have

R(τ , x) = Ke−rτN (
xmin − x − µ

γ
) − Kex+µ+

γ 2
2 N

(
xmin − x − µ− γ 2

γ

)
where N (·) is the cumulative normal distribution, and for Kou model we have

R(τ , x) = K (1 − p)
(
e−rτ+α2(xmin−x)

−
α2

α2 + 1
e−α2x+(α2+1)xmin

)
.

For American put option we can calculate R(τ , x) by

R(τ , x) =

∫
R\Ω

(K − Key)f (y − x)dy,

where for Merton model we have

R(τ , x) = KN (
xmin − x − µ

γ
) − Kex+µ+

γ 2
2 N

(
xmin − x − µ− γ 2

γ

)
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and for Kou model we have

R(τ , x) = K (1 − p)
(
eα2(xmin−x)

−
α2

α2 + 1
e−α2x+(α2+1)xmin

)
.

For approximating
∫
Ω
u(τ , y)f (y − x)dywe use the classical numerical integration method known as trapezoidal rule by∫

Ω

u(τ , y)f (y − x)dy ≈
△y
2

⎛⎝ Nx∑
j=1

ωju(τ , yj)f (yj − x)

⎞⎠
where yj = j△y with △y =

xmax−xmin
Nx

where Nx is the number of grids in x direction, and ωj = 1 for j = 1,Nx and ωj = 2 for
j = 2, . . . ,Nx − 1. Finally, by using approximate value for the first integral and an exact value for the second integral in (21),
the integral matrix under operator I is derived and denoted by I.

6. Time discretization

Let {0 = τ0 < τ1 < · · · < τMτ = T , δτ = τm − τm−1, 1 ≤ m ≤ Mτ } as a partition for interval [0, T ] and
{xmin = x1 < x2 < · · · < xNx = xmax} be partition of interval Ω = [xmin, xmax]. To evaluate an European option, let
Um := [u(τm, x1), u(τm, x2), . . . , u(τm, xNx )]

⊤ (here ⊤ means transpose) as an approximate value of the solution which can
be obtained by using the following time stepping schemes

• Crank–Nicolson, Leap-Frog (CNLF)

Um+1 − Um−1

2
= δτ (D − λI)(

Um+1 + Um−1

2
) + δτλIUm (22)

• Crank–Nicolson, Adams–Bashforth (CNAB)

Um+1 − Um = δτ (D − λI)(
Um+1 + Um

2
) + δτλI(

3Um − Um−1

2
) (23)

• Backward-difference formula of second order (BDF-2)

3Um+1 − 4Um + Um−1

2
= δτ (D − λI)Um+1 + δτλI(2Um − Um−1) (24)

for 1 ≤ m ≤ Mτ − 1 where D is the differentiation matrix associated with the differential operator and I is integral matrix
corresponding to the integral operator. In [44,45] stability of these schemes has been studied. Also, for m = 1 the implicit
Euler scheme is taken to avoid possible oscillations due to the non-smooth final value as the payoff function. In the following,
we consider the stability analysis of implicit–explicit CNLF, CNAB and BDF-2 schemes derived from [46] for the linear test
problem

u′(τ ) = νBu(τ ) + νCu(τ )

where νB and νC are the complex eigenvalues of the explicit and implicit part of the scheme, respectively. By using the spatial
discretization presented in the previous section for differential and integral operators, then we obtain a semi-discrete linear
system of ODEs

u′(τ ) = Du(τ ) + Iu(τ ) − λu(τ ), τ ≥ 0,

so, the following stability results are derived for the linear test problem.

Proposition 1. If I is strictly positive, then for real and nonpositive eigenvalues of D the CNLF scheme is conditionally stable for
λδτ < 1.

Proposition 2. If I is strictly positive, then for real and nonpositive eigenvalues of D the CNAB scheme is conditionally stable for
λδτ < 1

2 .

Proposition 3. If I is strictly positive, then for real and nonpositive eigenvalues of D the BDF-2 scheme is conditionally stable for
λδτ < 2

3 .

Under Merton and Kou models I is strictly positive for any quadrature with positive weights, so we have the following
corollaries.

Corollary 1. If eigenvalues of D are nonpositive, then the CNLF scheme is conditionally stable under Kou and Merton models for
all λδτ < 1.
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Corollary 2. If eigenvalues of D are nonpositive, then the CNAB scheme is conditionally stable under Kou and Merton models for
all λδτ < 1

2 .

Corollary 3. If eigenvalues of D are nonpositive, then the BDF-2 scheme is conditionally stable under Kou and Merton models for
all λδτ < 2

3 .

For RBF-PU discretization, we could not prove that eigenvalues of D are nonpositive or equivalently matrix D is an
M-matrix which is known as a sufficient condition, so these are remain as the open problems, but in numerical experiments,
we checked the nonpositivity of eigenvalues ofD numerically for different presented discretization parameters, and derived
that eigenvalues of D are nonpositive.

For American option, we use operator splitting method for solving LCP (7). The operator splitting method is introduced
by Ikonen and Toivanen in [35] to evaluate the price of the American put option under the Black–Scholes model, and the
method is studied by Toivanen in [47] under the Koumodel. The operator splitting method is based on the formulation with
an auxiliary variable Λ such that uτ (τ , x) − (D − λ)u(τ , x) − λIu(τ , x) = Λ(τ , x). Thus the LCP (7) for the American put
option is reformulated as⎧⎨⎩

uτ (τ , x) − (D − λ)u(τ , x) − λIu(τ , x) = Λ(τ , x), Λ(τ , x) ≥ 0
u(τ , x) ≥ H(x),
Λ(τ , x)(u(τ , x) − H(x)) = 0

(25)

Similar as the European put option, we apply the RBF-PUmethod for spatial discretization of differential and integral op-
erators inNx collocation points {xmin = x1 < x2 < · · · < xNx = xmax}, then corresponding differential and integralmatricesD
and I are derived. To evaluate an American put option price, we have to solve forUm := [u(τm, x1), u(τm, x2), . . . , u(τm, xNx )]

⊤

(here ⊤ means transpose) for 0 ≤ m ≤ Mτ as a solution to the time stepping schemes

• Crank–Nicolson, Leap-Frog (CNLF)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ũm+1 − Um−1

2
−

(
δτ (D − λI)(

Ũm+1 + Um−1

2
) + δτλIUm

)
= δτΛm,

Λm+1 = Λm +
Um+1 − Ũm+1

2δτ
,

Λm+1 ≥ 0, Um+1 ≥ H, (Λm+1)⊤(Um+1 − H) = 0

(26)

• Crank–Nicolson, Adams–Bashforth (CNAB)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ũm+1 − Um −

(
δτ (D − λI)(

Ũm+1 + Um

2
) + δτλI(

3Um − Um−1

2
)
)

= δτΛm,

Λm+1 = Λm +
Um+1 − Ũm+1

2δτ
,

Λm+1 ≥ 0, Um+1 ≥ H, (Λm+1)⊤(Um+1 − H) = 0

(27)

• Backward-difference formula of second order (BDF-2)⎧⎪⎪⎪⎨⎪⎪⎪⎩
3Ũm+1 − 4Um + Um−1

2
−

(
δτ (D − λI)̃Um+1 + δτλI(2Um − Um−1)

)
= δτΛm,

Λm+1 = Λm +
Um+1 − Ũm+1

2δτ
,

Λm+1 ≥ 0, Um+1 ≥ H, (Λm+1)⊤(Um+1 − H) = 0

(28)

where Ũm+1 is an intermediate solution vector, Λm := [Λ(τm, x1),Λ(τm, x2), . . . ,Λ(τm, xNx )]
⊤ is the auxiliary function

Λ(τ , x) evaluated at the discretization points and H := [H(x1),H(x2), . . . ,H(xNx )]
⊤ with H(·) is the payoff function.

Each time step is split into two parts. Starting from the initial vector U0 = H andΛ0 = 0, first, the intermediate solution
vector Ũm+1 is solved from the modified system of linear equations

• Crank–Nicolson, Leap-Frog (CNLF)

Ũm+1 − Um−1

2
−

(
δτ (D − λI)(

Ũm+1 + Um−1

2
) + δτλIUm

)
= δτΛm,

• Crank–Nicolson, Adams–Bashforth (CNAB)

Ũm+1 − Um −

(
δτ (D − λI)(

Ũm+1 + Um

2
) + δτλI(

3Um − Um−1

2
)
)

= δτΛm,
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• Backward-difference formula of second order (BDF-2)

3Ũm+1 − 4Um + Um−1

2
−

(
δτ (D − λI)̃Um+1 + δτλI(2Um − Um−1)

)
= δτΛm.

Second, the intermediate solution Ũm+1 is projected to be feasible, and Λm is updated by

Λm+1 = Λm +
Um+1 − Ũm+1

2δτ
to satisfy

Λm+1 ≥ 0, Um+1 ≥ H, (Λm+1)⊤(Um+1 − H) = 0.

The update step can be performed at each spatial grid point independently with the formulas

Um+1 = max(H, Ũm+1 − 2δτΛm), Λm+1 = max(Λm +
H − Ũm+1

2δτ
, 0).

7. Numerical results

In this section, we present numerical results to compute the prices of the American and European options using the RBF-
PU method. Although the scheme works for all radial basis functions, we will use a positive definite one known as inverse
multi-quadric radial basis function on different experimental setups. All computations are carried inMATLABwith a 3.6 GHz
Corei3 processor. We will use the following measure for the error

Error :=

⏐⏐⏐⏐V (0, S) − Vref (0, S)
Vref (0, S)

⏐⏐⏐⏐
where V (0, S) is the approximated value and Vref (0, S) is the reference value of option price. For European option under the
Kou and Merton model, there exists an analytical closed form solution [4,3], so Vref (0, S) in the definition of Error refers to
the exact solution, but for American option, analytical solution is not available, so Vref (0, S) refers to the numerical solutions
used in literature as reference valuewith highmesh refinement. The jump distribution parameters are not changed between
experiments. For Kou’smodel, the jumpparameters are given byα1 = 3.0465,α2 = 3.0775 and p = 0.3445, and forMerton’s
model are given by µ = −0.9 and γ = 0.45 in all Examples except Example 3.

Example 1. In this example, we consider European put option under Kou and Merton model with the following parameters

σ = 0.15, r = 0.05, T = 0.25, K = 100, λ = 0.1.

These parameters are adopted from [20,48]. The reference value for European put option under Kou model is 9.430457 at
S = 90, 2.731259 at S = 100, and 0.552363 at S = 110. The reference values for European put option under Merton model
are 9.285418 at S = 90, 3.149026 at S = 100, and 1.401186 at S = 110.

In this example, the computation interval is Ω = [xmin, xmax] = [−4, 4], and numerical results including errors at
different asset prices, cpu time in second and condition number of linear system of equations are shown in Tables 2 and
3 for different space Nx and time Mτ steps and different time discretization schemes Crank–Nicolson, Leap-Frog (CNLF),
Crank–Nicolson, Adams–Bashforth (CNAB) and Backward-difference formula of second order (BDF-2). Regarding the results
presented in Table 2 of [20], and Tables 7.1, 7.3 and 7.5 of [48], it is easy to derive that RBF-PUmethod combined with CNLF,
CNAB and BDF-2 are faster and accurate than methods developed in [20,48]. Also, the option value, Delta and Gamma as the
Greeks are plotted in Fig. 1.

Example 2. In this example, we consider American put option under Kou and Merton model with the following parameters

σ = 0.15, r = 0.05, T = 0.25, K = 100, λ = 0.1.

These parameters are adopted from [49,47]. The reference value [49] for American put option under Koumodel is 10.005071
at S = 90, 2.807879 at S = 100, and 0.561876 at S = 110. The reference values [49] for American put option under Merton
model are 10.003815 at S = 90, 3.241215 at S = 100, and 1.419796 at S = 110.

The computation interval isΩ = [xmin, xmax] = [−4, 4], and numerical results including errors at different asset prices,
cpu time in second and condition number of linear system of equations are shown in Tables 4 and 5 for different space Nx
and time Mτ steps and different time discretization schemes. Numerical results for American options by these parameters
are presented in Tables 3 and 6 in [49]. By comparing results, it is clear that RBF-PU method with CNLF is accurate than the
iterative method developed in [49]. Also, the option value, Delta and Gamma as the Greeks are plotted in Fig. 2.
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Table 2
Numerical results for European put option under the Kou model for Example 1.

Mτ Nx S = 90 S = 100 S = 110 Time (s) cond

Price Error Price Error Price Error

CNLF

64 128 9.42664177 4.0e−4 2.745998655 5.4e−3 0.5479142263 8.1e−3 0.006 2.24
128 512 9.42471690 6.1e−4 2.733174916 7.0e−4 0.5542181415 3.3e−3 0.043 2.41
256 1024 9.43045652 5.1e−8 2.731256352 9.7e−7 0.5523252997 6.8e−5 0.243 5.66

CNAB

64 128 9.42675126 3.9e−4 2.745841883 5.3e−3 0.5479419939 8.0e−3 0.010 1.28
128 512 9.42474519 6.0e−4 2.733134566 6.9e−4 0.5542258776 3.4e−3 0.050 1.63
256 1024 9.43046363 7.0e−7 2.731246184 4.7e−6 0.5523272883 6.5e−5 0.273 3.20

BDF-2

64 128 9.42672776 3.9e−4 2.745862104 5.3e−3 0.547915764 8.1e−3 0.010 2.03
128 512 9.42473887 6.1e−4 2.733140158 6.9e−4 0.554218938 3.4e−3 0.060 2.57
256 1024 9.43046202 5.3e−7 2.731247613 4.2e−6 0.552325540 6.8e−5 0.376 4.53

Table 3
Numerical results for European put option under the Merton model for Example 1.

Mτ Nx S = 90 S = 100 S = 110 Time (s) cond

Price Error Price Error Price Error

CNLF

64 128 9.27393905 1.2e−3 3.162594916 4.3e−3 1.392284639 6.4e−3 0.016 2.24
128 512 9.28049314 5.3e−4 3.150930743 6.0e−4 1.402503276 9.4e−4 0.063 2.41
256 1024 9.28542608 8.7e−7 3.149026452 1.4e−7 1.401149857 2.6e−5 0.276 5.77

CNAB

64 128 9.27411418 1.2e−3 3.162453523 4.3e−3 1.3922872191 6.3e−3 0.023 1.29
128 512 9.28053795 5.2e−4 3.150894291 5.9e−4 1.4025045132 9.4e−4 0.073 1.64
256 1024 9.28543733 2.1e−6 3.149017251 2.8e−6 1.4011502052 2.5e−5 0.340 3.29

BDF-2

64 128 9.27409209 1.2e−3 3.162475554 4.3e−3 1.392266254 6.4e−3 0.026 2.04
128 512 9.28053178 5.3e−4 3.150900321 5.9e−4 1.402498954 9.8e−4 0.086 2.57
256 1024 9.28543575 1.9e−6 3.149018788 2.3e−6 1.401148808 2.6e−5 0.433 4.57

Table 4
Numerical results for American put option under the Kou model for Example 2.

Mτ Nx S = 90 S = 100 S = 110 Time (s) cond

Price Error Price Error Price Error

CNLF

64 128 10.0076266 2.5e−4 2.823742587 5.6e−3 0.557440105 7.9e−3 0.006 2.24
128 512 10.0046835 3.9e−5 2.809225746 4.8e−4 0.563643337 3.1e−3 0.040 2.41
256 1024 10.0046929 3.8e−5 2.807848651 1.1e−5 0.561816040 1.1e−4 0.256 5.66

CNAB

64 128 9.98509195 1.9e−3 2.80926409 4.9e−4 0.5570629962 8.6e−3 0.010 1.29
128 512 10.0041366 9.3e−5 2.79307744 5.3e−3 0.5620876906 3.8e−4 0.040 1.63
256 1024 10.0000751 4.9e−4 2.78947936 6.5e−3 0.5603682064 2.7e−3 0.266 3.37

BDF-2

64 128 9.98502386 2.0e−3 2.809086344 4.3e−4 0.556943155 8.8e−3 0.010 2.03
128 512 10.0041819 8.9e−5 2.792737034 5.4e−3 0.562068442 3.4e−4 0.056 2.57
256 1024 10.0000758 4.9e−4 2.789427905 6.8e−3 0.560358254 2.7e−3 0.370 4.53

Example 3. In this example, we price European put option under Kou model with the following parameters

σ = 0.2, r = 0, T = 0.2, K = 1, λ = 0.2, α1 = 3, α2 = 2, p = 0.5.

These parameters are adopted from [47]. The reference value for European put option under Kou model is 0.042647805 at
S = 1. In this example the computation interval is Ω = [xmin, xmax] = [−4, 4], and numerical results including errors at
different asset prices, cpu time in second and condition number of linear system of equations are shown in the Table 6 for
different spaceNx and timeMτ steps and different time discretization schemes. The numerical results are in accordancewith
those found in [47]. Also, the option value, Delta and Gamma as the Greeks are plotted in Fig. 3.
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Fig. 1. The option value, Delta and Gamma functions for Example 1 and Kou model.

Table 5
Numerical results for American put option under the Merton model for Example 2.

Mτ Nx S = 90 S = 100 S = 110 Time (s) cond

Price Error Price Error Price Error

CNLF

64 128 10.0095536 5.7e−4 3.255032508 4.7e−3 1.41178599 5.6e−3 0.016 2.26
128 512 10.0016200 2.2e−4 3.242254687 3.2e−4 1.42109123 9.1e−4 0.063 2.41
256 1024 10.0024419 1.4e−4 3.241222821 2.4e−6 1.1.419752 3.0e−5 0.306 5.77

CNAB

64 128 9.98193166 2.2e−3 3.238885096 7.2e−4 1.411660715 5.7e−3 0.023 1.29
128 512 10.0049260 1.1e−4 3.219978857 6.5e−3 1.419613174 1.3e−4 0.073 1.63
256 1024 9.99995971 3.8e−4 3.218582923 6.9e−3 1.418371237 1.0e−3 0.330 3.25

BDF-2

64 128 9.98185622 2.2e−3 3.238575749 8.1e−4 1.411531249 5.8e−3 0.023 2.04
128 512 10.0049693 1.1e−4 3.219585889 6.7e−3 1.419600374 1.4e−4 0.090 2.57
256 1024 9.99995862 3.8e−4 3.218424649 7.0e−3 1.418362133 1.0e−3 0.436 4.57

Example 4. In this Example, we price European put options under Kou model with the same parameters as in Example 1
except that the local volatility is given by the function

σ (t, S) = 0.15 + 0.15(0.5 + 2t)
( S
100 − 1.2)2

( S
100 )

2 + 1.44
.

The reference value [47] for European put option under Kou model is 9.456392 at S = 90, 2.767587 at S = 100, and
0.561144 at S = 110. In this example the computation interval is Ω = [xmin, xmax] = [−4, 4], and numerical results
including errors at different asset prices, cpu time in second and condition number of linear system of equations are shown
in Table 7 for different space Nx and timeMτ steps and different time discretization schemes. Numerical results show that at
the strike price S = K , RBF-PUwith CNLF is accurate thanmethod of [47], but in points far from strike price results presented
in [47] are efficient. Also, the option value, Delta and Gamma as the Greeks are plotted in Fig. 4.

Example 5. In this Example, for more discussion about accuracy and stability of RBF-PUmethod, we consider Mertonmodel
for European put option with large jump intensity. So, we price European put options under Merton model with the same
parameters as in Example 1 except that the jump intensity λ is chosen to be 25 and 50.
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Fig. 2. The option value, Delta and Gamma functions for Example 2 and Merton model.

Table 6
Numerical results for European put option under the Kou model for Exam-
ple 3.

Mτ Nx S = 1 Time (s) cond

Price Error

CNLF

64 128 0.04269837301 1.2e−3 0.006 2.30
128 512 0.04264461463 7.5e−5 0.040 2.68
256 1024 0.04264770068 2.4e−6 0.286 7.73

CNAB

64 128 0.04269630337 1.1e−3 0.006 1.04
128 512 0.04264408798 8.7e−5 0.040 1.88
256 1024 0.04264756838 5.5e−6 0.276 4.39

BDF-2

64 128 0.04269649354 1.1e−3 0.010 2.26
128 512 0.04264414022 8.6e−5 0.056 3.03
256 1024 0.04264758172 5.2e−6 0.356 5.93

The reference value [50] for λ = 25 is 66.07703584 at S = 90, 64.56736614 at S = 100, and 63.18682693 at S = 110,
and for λ = 50 is 81.59880768 at S = 90, 80.78966717 at S = 100, and 80.03974097 at S = 110. In this example the
computation interval is Ω = [xmin, xmax] = [−21, 21], and numerical results including errors at different asset prices, cpu
time in second and condition number of linear system of equations are shown in Tables 8 and 9 for different space Nx and
timeMτ steps and different time discretization schemes.

Example 6. In this example, we price American put options under Kou and Merton models with parameters

σ = 0.1, r = 0.1, T = 1, K = 100, λ = 0.5.

For numerical technique, we set Ω = [xmin, xmax] = [−4, 4]. The reference values of the American put option under the
Merton model are 19.948906 at S = 90, 18.246332 at S = 100 and 16.666925 at S = 110. The reference values of the
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Fig. 3. The option value, Delta and Gamma functions for Example 3 and Kou model.

Table 7
Numerical results for European put option under the Kou model with local volatility for Example 4.

Mτ Nx S = 90 S = 100 S = 110 Time (s) cond

Price Error Price Error Price Error

CNLF

64 128 9.45568716 7.4e−5 2.781672466 5.1e−3 0.555162007 1.1e−2 0.200 2.94
128 512 9.45295859 3.6e−4 2.769369241 6.4e−4 0.561817963 1.2e−3 2.123 5.47
256 1024 9.45895936 2.7e−4 2.767595832 3.2e−6 0.559939518 2.1e−3 21.126 20.18

CNAB

64 128 9.45579308 6.3e−5 2.781519088 5.0e−3 0.5551908807 1.1e−2 0.270 2.01
128 512 9.45298456 3.6e−4 2.769329228 6.3e−4 0.5618260645 1.2e−3 3.200 3.23
256 1024 9.45896458 2.7e−4 2.767585195 6.5e−7 0.5599416666 2.1e−3 27.986 10.19

BDF-2

64 128 9.45761797 1.3e−4 2.762329601 1.9e−3 0.543860912 3.1e−2 0.146 3.55
128 512 9.45385417 2.7e−4 2.759619407 2.9e−3 0.556036672 9.1e−3 1.993 4.86
256 1024 9.45938225 3.2e−4 2.762717795 1.7e−3 0.557050480 7.3e−3 16.253 15.43

American put option under the Kou model are 10.698208 at S = 90, 6.417275 at S = 100 and 4.624099 at S = 110. These
values can be found in [51]. Results are reported in Tables 10 and 11.

To discuss about convergence of the time discretization, we numerically investigate the behavior of the global temporal
errors as a function of δτ which is defined by

Temporal error =

√ 1
Nx

Nx∑
j=1

(
V k(0, Sj) − V 10 000(0, Sj)

V 10 000(0, Sj)

)2

, (29)

where V k is the numerical solution of European and American options at the spatial nodes Sj ∈ ( K2 ,
3K
2 ) after k time steps,

and V 10 000 is the corresponding solution for k = 10 000 used as an approximation for the exact solution. Figs. 5–7 display
the global temporal errors versus δτ for CNLF, CNAB and BDF-2 schemes and for sequence of six increasing time steps k,
namely 8, 16, 32, 64, 128, 256 and Nx = 512 spatial nodes for Examples 1–6.



112 R. Mollapourasl et al. / Journal of Computational and Applied Mathematics 337 (2018) 98–118

Fig. 4. The option value, Delta and Gamma functions for Example 4 and Kou model.

Table 8
Numerical results for European put option under the Merton model with λ = 25 for Example 5.

Mτ Nx S = 90 S = 100 S = 110 Time (s) cond

Price Error Price Error Price Error

CNLF

64 128 66.2795466 3.1e−3 64.65695038 1.4e−3 62.9859099 3.2e−3 0.013 2.62
128 512 65.2474607 1.2e−2 64.63965706 1.1e−3 62.5704635 9.7e−3 0.060 3.25
256 1024 66.0216217 8.4e−4 64.59551682 4.3e−4 63.1699677 2.7e−4 0.321 3.59

CNAB

64 128 66.2689964 2.9e−3 64.6446335 1.2e−3 62.97271527 3.4e−3 0.020 1.40
128 512 65.2447347 1.2e−2 64.6362690 1.1e−3 62.56721822 9.8e−3 0.066 1.79
256 1024 66.0208252 8.5e−4 64.5947285 4.2e−4 63.16909336 2.8e−4 0.353 2.17

BDF-2

64 128 66.2719099 2.9e−3 64.64868214 1.2e−3 62.9774841 3.3e−3 0.023 2.28
128 512 65.2446846 1.2e−2 64.63640293 1.1e−3 62.5672883 9.8e−3 0.083 2.79
256 1024 66.0208494 8.5e−4 64.59472989 4.2e−4 63.1691225 2.8e−4 0.446 3.08

As a first main observation, the global temporal errors decrease monotonically as Mτ increases or equivalently δτ
decreases. Concerning the actual convergence behavior, it is easy to see from Figs. 5–7 that the temporal errors as a function
of δτ are bounded from above in each case by C(δτ )p with some moderate constants C where p ≈ 2 for more cases.

The accuracy of RBF methods highly depends upon the shape parameter ϵ of the basis functions, which is responsible
for the flatness of the functions. For smooth problems, the best accuracy is typically achieved when ϵ is small, but then the
condition number of the linear system becomes very large. In this part of the paper, we try to find the best compromise for
the size of ϵ for our problem. Fig. 8 displays the dependence of the Error defined by

Error =

√ 1
Neval

Neval∑
i=1

(
V (0, Si) − Vref (0, Si)

Vref (0, Si)

)2

, (30)

on the size of the shape parameter for the CNLF scheme and American and European options presented in Examples 1–6.
In this definition, Neval means number of evaluation points. In Example 3, Neval = 1 and evaluation is performed at S = 1,
and in all other examples Neval = 3 and evaluation are performed at S = 90, 100, 110. Also, Vref is the reference value
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Table 9
Numerical results for European put option under the Merton model with λ = 50 for Example 5.

Mτ Nx S = 90 S = 100 S = 110 Time (s) cond

Price Error Price Error Price Error

CNLF

64 128 81.2690315 4.0e−3 80.3395912 5.6e−3 79.30881743 9.1e−3 0.016 3.04
128 512 80.5666462 1.3e−2 80.9017254 1.4e−3 79.29764274 9.3e−3 0.060 4.00
256 1024 81.5569489 5.1e−4 80.8505427 7.5e−4 80.04428815 5.7e−5 0.306 5.68

CNAB

64 128 81.2527329 4.2e−3 80.32191224 5.8e−3 79.28992521 9.4e−3 0.026 1.81
128 512 80.5613454 1.3e−2 80.89580517 1.3e−3 79.29148446 9.3e−3 0.070 2.59
256 1024 81.5555658 5.3e−4 80.84905509 7.3e−4 80.04270278 3.7e−5 0.353 3.35

BDF-2

64 128 81.2708377 4.1e−3 80.34095998 5.5e−3 79.30983826 9.1e−3 0.026 3.21
128 512 80.5639230 1.3e−2 80.89861484 1.3e−3 79.29443347 9.3e−3 0.090 3.97
256 1024 81.5562002 5.2e−4 80.84973873 7.4e−4 80.04342847 4.6e−5 0.456 4.63

Table 10
Numerical results for American put option under the Kou model for Example 6.

Mτ Nx S = 90 S = 100 S = 110 Time (s) cond

Price Error Price Error Price Error

CNLF

64 128 10.64084579 5.4e−3 6.412075743 8.1e−4 4.593321237 6.6e−3 0.006 2.36
128 512 10.69138383 6.4e−4 6.417126926 2.3e−5 4.625021498 2.0e−4 0.040 3.14
256 1024 10.69588043 2.2e−4 6.417371451 1.1e−5 4.624253797 3.3e−5 0.256 10.21

CNAB

64 128 10.12211356 5.4e−2 6.386864933 4.7e−3 4.585504179 8.3e−3 0.006 1.52
128 512 10.39503274 2.8e−2 6.385103756 5.0e−3 4.618203872 1.3e−3 0.053 2.12
256 1024 10.35392468 3.2e−2 6.386614237 4.8e−3 4.617585966 1.4e−3 0.090 5.57

BDF-2

64 128 10.12303279 5.4e−2 6.386563118 4.8e−3 4.58544356 8.3e−3 0.010 2.51
128 512 10.39976975 1.8e−2 6.384902961 5.0e−3 4.61812649 1.3e−3 0.056 3.52
256 1024 10.36344012 3.1e−2 6.386560969 4.8e−3 4.61755460 1.4e−3 0.373 7.48

Table 11
Numerical results for American put option under the Merton model for Example 6.

Mτ Nx S = 90 S = 100 S = 110 Time (s) cond

Price Error Price Error Price Error

CNLF

64 128 19.89116273 2.9e−3 18.21208449 1.9e−3 16.61800262 2.9e−3 0.016 2.47
128 512 19.94640105 1.2e−4 18.24433217 1.1e−4 16.66528098 9.9e−5 0.060 3.93
256 1024 19.94894104 1.7e−6 18.24636221 1.6e−6 16.66695116 1.6e−6 0.320 13.23

CNAB

64 128 19.99192112 2.1e−3 18.19828606 2.6e−3 16.60712916 3.6e−3 0.033 1.64
128 512 19.90569885 2.2e−3 18.23087976 8.5e−4 16.64962592 1.0e−3 0.076 2.51
256 1024 19.90519493 2.2e−3 18.23464176 6.4e−4 16.65171553 9.1e−4 0.340 6.55

BDF-2

64 128 19.99256264 2.2e−3 18.19802769 2.6e−3 16.60670145 3.6e−3 0.030 2.79
128 512 19.90366105 2.3e−3 18.23075321 8.5e−4 16.64957617 1.0e−3 0.090 4.07
256 1024 19.90564461 2.2e−3 18.23462274 6.4e−4 16.65169651 9.1e−4 0.446 8.73
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Fig. 5. Temporal error vs. δτ for the CNLF, CNAB and BDF-2 schemes with Nx = 512 spatial nodes for Examples 1 and 2.

Fig. 6. Temporal error vs. δτ for the CNLF, CNAB and BDF-2 schemes with Nx = 512 spatial nodes for Examples 3 and 4.

presented in each example separately. According to Fig. 8, we choose ϵ = 10 for the European and American option pricing
experiments.

In the previous section, we presented some propositions and corollaries related to stability analysis of CNLF, CNAB and
BDF-2 time discretizations schemes. Corollaries 1–3 guarantee the stability of CNLF, CNAB and BDF-2 schemes if all real
eigenvalues of differentiation matrix D corresponding to the differential operator D are nonpositive. Figs. 9–11 show real
part of the largest eigenvalue of matrix D for different values of h known as space step size and ϵ known as shape parameter
of RBFs for different examples.
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Fig. 7. Temporal error vs. δτ for the CNLF, CNAB and BDF-2 schemes with Nx = 512 spatial nodes for Examples 5 and 6.

Fig. 8. Error in the price of the different option models against the shape parameter ϵ.

8. Conclusion

We proposed RBF-PU method to price American and European options under the jump–diffusion model. The free
boundary problem formulated as a PDE was transformed into an LCP problem. The RBF-PU method was used for the spatial
discretization. Then, CNLF, CNAB and BDF-2 time discretizations were combined with an operator splitting method. These
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Fig. 9. Real part of the largest eigenvalue of matrix D vs. space step size h (left) and ϵ (right) for Example 2.

Fig. 10. Real part of the largest eigenvalue of matrix D vs. space step size h (left) and ϵ (right) for Example 4.

result in a linear algebraic system with a sparse matrix that has a small condition number. The shape parameter in the RBF
affects the accuracy and stability of the method. Fig. 8 confirms that RBF-PU method is less sensitive to the change of shape
parameter. The numerical experiments presented in tables confirm that CNLF time discretization performs slightly better
and faster than CNAB and BDF-2 schemes. An increase of the number of nodal points and correspondingly an increase of the
number of patches also leads to an improvement of the approximation. The effect of the time discretization is measured by
studying the temporal error. For the American and European option cases where the CNLF, CNAB and BDF-2 schemes are
combined with an operator splitting method, we conclude that the rate of convergence is of second order for more cases.
The experiments also demonstrated that European and American option prices with error around 1.0e−4 can be computed
in less than one second on a PC. Thus, the developed method is very efficient and accurate.
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Fig. 11. Real part of the largest eigenvalue of matrix D vs. space step size h (left) and ϵ (right) for Example 6.
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