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ABSTRACT   

Photoacoustic imaging (PAI) is an imaging modality for obtaining absorption coefficient at every location inside 

the tissue based on the detected photoacoustic signals. PA image reconstruction aims to determine the initial PA 

pressure everywhere inside the tissue. The pressure is proportional to both absorption coefficient and light 

fluence. Provided that fluence is homogenous, the reconstructed image will be an accurate mapping of the 

absorption coefficient of the tissue. Here we presented a method for obtaining uniform fluence inside the region 

of interest. We created a large dataset of fluence maps for different source locations, diameters and numerical 

apertures with Monte Carlo simulations, then used this dataset to solve an optimization problem for finding the 

source configuration which results in the best fluence distribution. 
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1. INTRODUCTION  

Photoacoustic imaging (PAI) is an emerging imaging modality which shows great potential for preclinical 

research and clinical practice [1-4] including brain imaging in both small animals [5-8] and humans [9-11]. 

Photoacoustic imaging (PAI) uses short laser pulses to illuminate the tissue, then the absorbed light energy turns 

into acoustic waves. Reconstructed images from photoacoustic (PA) signals are interpreted as distribution of 

absorption inside the tissue which further can be used for obtaining concentrations of chromophores. Different 

methods have been used to improve the PA signals and reconstructed images [12-15].  The PA pressure is 

proportional to both absorption coefficient, µa(r) and light fluence distribution, F(r), inside the tissue. Provided 

that F(r) is homogenous or uniform, the reconstructed image will be an accurate representation of the absorption 

coefficient of the tissue at a particular region. The goal of this study is to devise a PA-imaging system for 

imaging the entire human infant brain in which the light fluence distribution is uniform or as close as possible to 

it inside the head or at least inside some desired regions. 

This device consists of a hemispherical helmet which houses a large number of optical fibers and ultrasound 

detectors. Several parameters are considered for optimization problem namely, the position of the optical fibers, 

diameter and the numerical aperture (NA) of the fibers. Using Monte Carlo simulation we create a large dataset 

of fluence maps for optical fiber for different diameters and numerical apertures. Then this dataset is used to 



 

 
 

 

 

 

solve an optimization problem to find the configuration which produce a fluence as close as possible to a 

uniform distribution. 

 

2. MATERIALS AND METHODS 

2.1 Simulations and dataset generation 

We used an infant head atlas model [16] which was segmented into six different regions, namely, extra cranial 

tissue (ECT) which is the combination of scalp and skull, cerebro-spinal fluid (CSF), gray matter, white matter, 

brain stem and cerebellum. We combined the cerebellum with gray matter and brain stem with white matter 

resulting in four different tissue types (Fig. 1). Voxels have a volume of 0.86 mm2. Optical properties tissues 

were selected similar to that of 800 nm light [17]. 

Then we devised an equidistant configuration on a hemisphere with 260 optical fibers and 120 ultrasound 

transducers (Fig. 2(a)). This hemisphere can be considered as a helmet which can be put on the infant’s head as 

illustrated in Fig. 2(b). The gap between the helmet and head will be filled with ultrasound gel or water for 

impedance matching.  We used water in the simulations. Locations of optical fibers are shown as red dots in Fig. 

2(b) and each source has its own ID (srcID). To create our dataset we changed the diameter of the optical fibers 

and numerical apertures of the fibers. We considered ten different diameters from 0.5 to 5 mm in 0.5 mm steps 

and 5 different numerical apertures with NA=0.11, 0.22, 0.3, 0.39 and 0.5. These values are selected since they 

are available in practice. Then, Monte Carlo simulations are performed to obtain the fluence maps for each set 

of parameters and all 260 sources, amounting to a total simulation number of 13,000.  For each run 100 million 

photons are simulated on GPU using MCX software [18]. After all simulation were completed we had a large 

dataset for each source and different parameters. Total fluence then could be calculated by adding the specified 

source to the current fluence map or subtracting it from the current from fluence map. It is as if we are turning 

on or off a specific source with specified parameters, namely the diameter and NA.  

  

(a)       (b) 

Figure 1. Infant head model used for simulations. Different colors represent different tissue types (blue: ECT, 

green: CSF, orange: gray matter and brown: white matter). (a) para-sagittal and (b) para-coronal cross-sections.  

 



 

 
 

 

 

 

2.2 Optimization problem 

Suppose we have N light sources, the positions of these light sources are fixed and the diameters are the same. 

We want to decide the diameter and the srcIDs to be turned on to obtain a uniform distribute fluence. We try to 

formulate this problem as an optimization problem 

  20min
LXx

FxF 


     

 (1) 

where x is a N+1 vector, the first N entries are binary variable, with 1 and 0 to indicate the corresponding srcID 

should be turned on and turned off, the last entry is the diameter to be chosen. To set up the problem we should 

specify the desired fluence map F0, the fluence map function F(x), the cost function   20 L
FxF   and the 

constrains of variable x.  

The Genetic Algorithm (GA) is a classic algorithm, which is a bio-inspired and population based technology for 

complex problems [19-21]. The algorithms are applicable to a wide range of optimization problems. This 

flexibility makes them attractive for many optimization problem in practice. GAs iteratively update a 

population of individuals. On each iteration, the individuals are evaluated using a fitness function. A new 

generation of the population is obtained by probabilistically selecting fitter individuals from the current 

generation. Some of these individuals are admitted to the next generation unchanged. Others are subject to 

genetic operators such as crossover and mutation to create new offspring. Here is a sketch of a typical GA in 

pseudocode in Fig. 3. 

 

(a)       (b) 

Figure 2. Helmet configuration design. (a) The configuration of optical fibers (red dots) and ultrasound transducers 

(blue circles), (b) placement of the helmet on the head with optical fibers sitting on the helmet. 

 



 

 
 

 

 

 

 

Figure 3. Genetic Algorithm (GA) 

 

3. RESULTS 

 
3.1 Fluence maps 

As said before, we can have resulting total fluence for each source configuration from our dataset. These fluence 

maps are used in the optimization problem when we are searching for the best configuration which gives us the 

fluence closest to the desired fluence f0. Fig. 4 shows resulted fluence maps for two different source 

configurations. We can select our regions of interest so we have the fluence map only for those regions. Fig. 4 

shows the fluence map in only the gray and white matter tissues. 



 

 
 

 

 

 

 

 

(a) 

 

       (b) 

Figure 4. Fluence maps for different source configurations. (a) (left) shows the optical fibers and their IDs. Fiber 

no. 85 is turned on indicated with a yellow circle. (Middle) Fluence map for gray and white matter and (right) is 

the same fluence map but from a cross-sectional cut. (b) the same as previous but for a different set of fibers 

indicated with yellow circles.   

 

3.2 Optimum answer for a special case 

Here we demonstrate the result of the optimizations problem for one specific case, a uniformly distributed 

fluence with constant total fluence over the whole region. First, we fix F0 such that the total fluence is 800, the 

corresponding fluence map is shown in Fig. 5(a). Using the genetic algorithm, we obtained the following 

optimal result, 

x = [010001100101001001011100101010011 

        100000100111110101011010100111010 



 

 
 

 

 

 

        100111000101111011110011010111011 

        010100101101101011100100111011011 

        0101010100110001110111010111, 1.6]; 

This result means that the diameter of the light sources should be 1:6 mm, and 88 light sources should be turned 

on. Note that in this case numerical aperture was not an optimization parameter and for all optical fibers 

NA=0.3.  Fig. 5(b) shows the obtained fluence map for this answer.  

  

(a)

 

(b) 

Figure 5. Optimization problem. (a) Desired (initial) fluence map, (b) the best fluence map returned from GA 

method which is obtainable with the available dataset.  

4. CONCLUSION 

Having a uniform fluence distribution inside the imaging object, makes the reconstructed photoacoustic images 

a more accurate representation of absorption coefficient. In this study we presented a method for achieving 

uniform illumination. Using Monte Carlo simulations we created a large dataset of fluence maps for 260 optical 

fibers for different diameters and numerical apertures. Using this dataset we tried to obtain a fluence map as 

close as possible to our desired fluence map which was uniform. Although, the entirely uniform distribution 

could not be obtained, this was the closest answer with the available dataset. At this point the numerical aperture 

was not an optimization parameter and it was fixed at NA=0.3. In the other hand, while different diameters were 



 

 
 

 

 

 

used for optimization, yet, all fibers had the same diameter meaning that the diameter of all fibers were 

changing together. In the future works we want to change the NA and diameter of each fiber individually. This 

could improve the answer to the optimization problem. 
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