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Abstract
It is well known that the Ciarlet-Raviart mixed method for solving the biharmonic eigenvalue
problem with Navier Boundary Condition by decomposing the operator into two Laplacians
may generate spurious eigenvalues on non-convex domains. To overcome this difficulty, we
adopt a recently developed mixed method, which decomposes the biharmonic equation into
three Poisson equations and still recovers the original solution. Using this idea, we design
an efficient biharmonic eigenvalue algorithm, which contains only Poisson solvers. With
this approach, eigenfunctions can be confined in the correct space and thereby spurious
modes in non-convex domains are avoided. A priori error estimates for both eigenvalues and
eigenfunctions on quasi-uniform meshes are obtained; in particular, a convergence rate of
O(h2α) (0 < α < π/ω, ω > π is the angle of the reentrant corner) is proved for the linear
finite element. Surprisingly, numerical evidence demonstrates an O(h2) convergent rate for
the quasi-uniform mesh with the regular refinement strategy even on non-convex polygonal
domains.
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1 Introduction

The biharmonic eigenvalue problem is one of the fundamental model problems in thin plate
theories of elasticity. As it is a fourth-order problem, a direct conforming discretization needs
a finite element space with C1 continuity. However, due to its high computational cost and
complexity of the finite element space structure, thismethod is not very practical, especially in
the three-dimensional case. To overcome this difficulty, various finite element methods have
been introduced and analyzed, such as nonconforming methods [1], discontinuous Galerkin
methods [2, 3],C0 interior penaltyGalerkin (C0IPG)methods [4, 5], andmixed finite element
methods [6].

In this paper, we are interested in a mixed finite element approximation of the biharmonic
eigenvalue problem with Navier boundary conditions in a non-convex polygonal domain.
The Ciarlet-Raviart mixed element method [6] is particularly appealing for the biharmonic
equations with Navier boundary conditions, because such boundary conditions allow one
to decompose a fourth-order equation into two second-order equations that are completely
decoupled. This means that a reasonable numerical solution can be obtained by merely
applying the finite element Poisson solver in the mixed formulation. Unfortunately, it has
been reported in [7–9] that the numerical behavior of this mixed method can be affected by
the domain geometry. In a convex domain, it was proved that the corresponding numerical
solutions converge to the solution of the primal formulation. However, this is invalid when
the domain is non-convex. In fact, the Ciarlet-Raviart mixed formulation defines a weak
solution in a space larger than that for the primal formulation. If the domain is non-convex,
this mismatch in the function spaces leads to the emergence of singular functions, which
in turn causes the solution to be different from that in the primal formulation. As for bihar-
monic eigenvalue problems, some references [4, 10] also observed similar results. It has been
pointed out in these references that the Ciarlet-Raviart mixed method may generate spurious
eigenvalues when the domain is non-convex. It seems that the Ciarlet-Raviart mixed method
is not suitable for the biharmonic problems with Navier boundary conditions in non-convex
domains.

Very recently, H. Li et al. [11] proposed a modified mixed formulation for the standard
biharmonic problem that is decoupled as usual, and at the same time ensures that the associated
solution is equal to the solution of the original biharmonic equation in both convex and non-
convex domains. The main idea is to introduce an additional intermediate Poisson problem
that confines the solution to the correct space. The whole process involves only the Poisson
solver. Onemay ask whether it is possible to extend this method to the biharmonic eigenvalue
problem. This paper attempts to answer this question. We show that, both theoretically and
numerically, the idea can indeed be used in eigenvalue problems to obtain reliable results
without spuriousmodes.Moreover, in our numerical experiments,wefind that even if uniform
meshes are used in non-convex domains, the eigenvalues obtained by the modified mixed
method can converge at the optimal rate O(h2). This is very different from other existing
methods, when at most O(h2β) (0 < β < 1) convergence can be achieved if a graded mesh
is not used [4]. We would like to emphasize that the newmethod uses only the Poisson solver
on uniform or quasi-uniform meshes, for which there are many packages available with low
computational cost (O(N ), where N is the total number of degrees of freedom). This is a
huge advantage over existing methods for the biharmonic eigenvalue problem.

The rest of the paper is arranged as follows. In Section 2, we review the model problem
with related notations, introduce themodifiedmixed formulation proposed in [11], and extend
it to the biharmonic eigenvalue problem. In Section 3, we derive a priori error estimates of
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numerical eigenvalues and eigenfunctions. In Section 4, several numerical experiments are
presented to confirm our theoretical analysis.

For simplicity of notation, we shall use � to denote less than or equal to up to a constant
independent of the mesh size, variables, or other parameters appearing in the inequality.

2 Preliminary

Let � ⊂ R
2 be a polygonal domain with boundary ∂�. Denote by Hr (�) the usual Sobolev

space of real order r with norm ‖·‖r . Conventionally, we set H0(�) = L2(�) and H1
0 (�) =

{v ∈ H1(�) : v|∂� = 0}.
Consider the following biharmonic equation and associated eigenvalue problem:

�2φ = f in �, φ = �φ = 0 on ∂�; (1)

�2u = λu in �, u = �u = 0 on ∂�, (2)

where f ∈ L2(�). The weak formulation of the biharmonic problem (1) is to seek φ ∈
H1
0 (�) ∩ H2(�) such that

(�φ,�ψ) = ( f , ψ), ∀ψ ∈ H1
0 (�) ∩ H2(�), (3)

and the weak formulation of (2) is to seek u ∈ H1
0 (�) ∩ H2(�) such that

(�u,�v) = λ(u, v), ∀v ∈ H1
0 (�) ∩ H2(�). (4)

The above formulations require the use of H2-conforming methods, which are quite com-
plicated. In practice, this is far from desirable. Instead of using such methods, a popular
procedure is to use mixed formulation.

Usually, set ρ̄ = −�φ̄, then Eq. (1) can be written as the following mixed formulation:
find (ρ̄, φ̄) ∈ H1

0 (�) × H1
0 (�) such that

(∇φ̄,∇ψ) = (ρ̄, ψ), ∀ψ ∈ H1
0 (�), (5a)

(∇ρ̄,∇ν) = ( f , ν), ∀ν ∈ H1
0 (�). (5b)

Similarly, by introducing the auxiliary variable σ̄ = −�ū, we can derive the following
eigenvalue problem: find (λ̄, σ̄ , ū) ∈ R × H1

0 (�) × H1
0 (�) such that

(∇ū,∇ψ) = (σ̄ , ψ), ∀ψ ∈ H1
0 (�), (6a)

(∇σ̄ ,∇ν) = (λ̄ū, ν), ∀ν ∈ H1
0 (�). (6b)

Note that (5) is just a system of two Poisson equations, and the solution of (6) can be
obtained by solving (5) iteratively. Therefore (5) and (6) are much simpler to solve than (1)
and (2), respectively. However, according to [7–9], the solution of (1) is not always equal
to the solution of (5). The equivalence may depend on the domain geometry. When � is a
convex domain, the solution of (1) coincides with the solution of (5), and then numerical
approximations of (5) converge to the solution of (1). On the other hand, if� is a non-convex
domain, the solution of (5) may be a wrong solution of (1). As a consequence, themixed finite
element method based on (5) may generate numerical solutions that do not converge to the
solution of (1). When it comes to eigenvalue problems, similar results have been reported in
some references [4, 10]. The mixed method based on (6) may generate spurious eigenvalues
if � is non-convex. The main reason for the occurrence of the spurious eigenvalues is that
the Ciarlet-Raviart mixed formulation (6) defines eigenfunctions in a larger space than that
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for (2). To avoid spurious eigenvalues, we exploit the method of [11] which introduced an
additional intermediate Poisson problem to capture the singular term so that the solution of
(5) can be restricted in the correct space. Using this approach, the eigenfunctions of (6) are
guaranteed to be in the correct space, which results in correct corresponding eigenvalues.

To begin with, we assume that � has a reentrant corner Q and the corresponding interior
angle ω ∈ (π, 2π). Without loss of generality, we set Q as the origin. Let (r , θ) be the polar
coordinates with Q as the center, and ω be composed of two half lines θ = 0, and θ = ω.
Given R > 0, we define a sector K R

ω ⊂ � with radius R as

K R
ω = {(r cos θ, r sin θ)| 0 ≤ r ≤ R, 0 ≤ θ ≤ ω}.

Following [11], we introduce an L2 function which plays an important role in constructing
the equivalent mixed formulation in �.

Definition 1 Given the parameters τ ∈ (0, 1) and R such that K R
ω ⊂ �, we define an L2

function in �,

ξ(r , θ; τ, R) := s−(r , θ; τ, R) + ζ(r , θ; τ, R), (7)

where

s−(r , θ; τ, R) = χ(r; τ, R)r− π
ω sin(

π

ω
θ) ∈ L2(�), (8)

with χ(r; τ, R) ∈ C∞(�) satisfying χ(r; τ, R) = 1 for 0 ≤ r ≤ τ R and χ(r; τ, R) = 0 for
r > R, and ζ ∈ H1

0 (�) satisfies

− �ζ = �s− in �, ζ = 0 on ∂�. (9)

It is easy to see that s− ∈ C∞(� \ K δ
ω) for any δ > 0 and s− = 0 for (r , θ) ∈ � \ K R

ω .
Furthermore �s− = 0 if r < τ R or r > R.

Denote

a(w,ψ) = (w,ψ) − (c(w)ξ, ψ), b(ψ, v) = (∇ψ,∇v),

where

c(w) = (w, ξ)

‖ξ‖20
. (10)

Based on the above definition, the authors in [11] introduced the following modified mixed
method for (1), {

−�ρ = f in �,

ρ = 0 on ∂�; and

{
−�φ = ρ − c(ρ)ξ in �,

φ = 0 on ∂�,
(11)

and corresponding variational formulation: find (ρ, φ) ∈ H1
0 (�) × H1

0 (�) such that

−a(ρ, ψ) + b(ψ, φ) = 0, ∀ψ ∈ H1
0 (�), (12a)

b(ρ, v) = ( f , v), ∀v ∈ H1
0 (�). (12b)

Motivated by this, we propose the following modified eigenvalue problem for (2),{
−�σ = λu in �,

σ = 0 on ∂�; and

{
−�u = σ − c(σ )ξ in �,

u = 0 on ∂�,
(13)
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and the corresponding modified mixed weak formulation: find (λ, σ, u) ∈ R × H1
0 (�) ×

H1
0 (�) such that

−a(σ, ψ) + b(ψ, u) = 0, ∀ψ ∈ H1
0 (�), (14a)

b(σ, v) = (λu, v), ∀v ∈ H1
0 (�). (14b)

Remark 1 If � has Nc reentrant corners (Nc > 1), we only need to rewrite the second
equation of (13) as follows{

−�u = σ − ∑Nc
i=1 ci (σ )ξi in �,

u = 0 on ∂�,
(15)

where for i = 1, 2, · · · , Nc, ξi can be defined as in Definition 1, and ci (σ ) can be solved by
the following linear equations

Nc∑
j=1

(ξi , ξ j )c j (σ ) = (σ, ξi ). (16)

Given f ∈ L2(�), we can rewrite the following component solution operators for (12):

T : L2(�) → H1
0 (�), T f = φ; S : L2(�) → H1

0 (�), S f = ρ. (17)

Using the above operators, we can rewrite (14) as the following equivalent operator forms

Tu = λ−1u, σ = S(λu). (18)

Remark 2 According to Theorem 2.7 in [11], (12) is equivalent to (3). From this, one can
easily see that the solution operator T defined in (17) is also the solution operator of (3),
and vice versa. Therefore they induce the same eigenvalue problem. However, this does not
mean that any finite element method that can approximate (12) is suitable for the eigenvalue
problem (14). As pointed out in [12], there is an intrinsic difference between the source
problem and eigenvalue problem. In addition, since ξ in (10) is generally unknown, we have
to construct a discrete bilinear form ah(·, ·) to approximate a(·, ·), which means that we
cannot simply use the conclusions in [13] to get the error estimates about the eigenvalues and
eigenfunctions. Hence, it is worth analyzing the convergence of the finite element method
for (14).

We now introduce the finite element method for (12) and (14). Let {Th} be a series of
shape-regular meshes of �: there exists a constant γ ∗ such that

hK
dK

≤ γ ∗, ∀K ∈ ∪hTh,

where, for each K ∈ Th , hK is the diameter of K and dK is the diameter of the biggest ball
contained in K . As usual, we set h = maxK∈Th hK . Let S

h
0 ⊂ H1

0 (�) be the C0 Lagrange
finite element space associated with Th ,

Sh0 := {v ∈ C0(�̄) ∩ H1
0 (�) : v|K ∈ P1(K ),∀K ∈ Th}, (19)

where P1(K ) is the space of polynomials of degree no more than 1 on K .
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To define the modified mixed finite element methods of (12) and (14), we start with
computing the finite element solution ζh ∈ Sh0 of the Poisson equation

b(ζh, vh) = (�s−, vh), ∀vh ∈ Sh0 , (20)

and set ξh = ζh + s−. Denote

ah(w,ψ) = (w,ψ) − (ch(w)ξh, ψ),

where

ch(w) = (w, ξh)

‖ξh‖20
. (21)

Then the modified mixed finite element method of (12) is defined as follows: find (ρh, φh) ∈
Sh0 × Sh0 such that

−ah(ρh, ψh) + b(ψh, φh) = 0, ∀ψh ∈ Sh0 , (22a)

b(ρh, vh) = ( f , vh), ∀vh ∈ Sh0 . (22b)

Inspired by the above, we propose the following modified mixed method for (14): find
(λh, σh, uh) ∈ R × Sh0 × Sh0 such that

−ah(σh, ψh) + b(ψh, uh) = 0, ∀ψh ∈ Sh0 , (23a)

b(σh, vh) = (λhuh, vh), ∀vh ∈ Sh0 . (23b)

Remark 3 Note that the solution of (23) can be obtained by solving a series of discrete Poisson
equations, and each of them can be solved by a fast Poisson solver whose computational cost
is O(N ), where N is the total number of degrees of freedom. In addition, we only need to
solve (20) once, whose computational cost is also O(N ). Therefore the computational cost
for finding an eigenvalue is O(N ).

Clearly, given f ∈ L2(�), (22) is uniquely solvable. Therefore we can define the following
component solution operators:

Th : L2(�) → Sh0 (�), Th f = φh; Sh : L2(�) → Sh0 (�), Sh f = ρh .

Using these operators, we can rewrite (23) as the following equivalent operator forms

Thuh = λ−1
h uh, σh = Sh(λhuh). (24)

It can be easily verified that both T : L2(�) → L2(�) in (18) and Th : L2(�) → L2(�)

are compact self-adjoint operators.
Given g ∈ L2(�), consider the following Poisson equation: find w ∈ H1

0 (�) such that

b(w, v) = (g, v), ∀v ∈ H1
0 (�), (25)

and its finite element approximation: find wh ∈ Sh0 such that

b(wh, vh) = (g, vh), ∀vh ∈ Sh0 . (26)

Define the Ritz projection operator Ph : H1
0 (�) → Sh0 such that

b(w − Phw, vh) = 0, ∀vh ∈ Sh0 . (27)
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It is easy to see that the solution operators corresponding to (25) and (26) are just S and Sh ,
respectively. In addition, for any g ∈ L2(�) there hold

w = Sg, wh = Shg, (28)

‖Sg‖1 ≤ C‖g‖0, ‖Shg‖1 ≤ C‖g‖0, (29)

where C is a positive constant independent of g and mesh size h. It follows from (12b), (22b)
and (27) that

ρh = Phρ, Sh = Ph S. (30)

According to [14], we have the following elliptic regularity estimate:

‖Sg‖1+α ≤ C�,α‖g‖0, ∀g ∈ L2(�), (31)

where α ∈ (0, π/ω). From (31) and interpolation theory we have

η0(h) ≡ sup
f ∈L2(�),‖ f ‖0=1

inf
ψ∈Sh0

‖S f − ψ‖1 � hα. (32)

3 A Priori Error Analysis

The error estimates of the modified mixed method of biharmonic Eq. (1) can be expressed
as follows:

Theorem 1 Let (ρ, φ) and (ρh, φh) be the solutions of (12) and (22), respectively, then

‖ρ − ρh‖1 � ‖∇(ρ − Phρ)‖0, (33)

‖ρ − ρh‖0 � η0(h)‖∇(ρ − ρh)‖0, (34)

‖φ − φh‖1 � ‖φ − Phφ‖1 + ‖ρ − ρh‖0 + ‖ξ − ξh‖0, (35)

‖φ − φh‖0 � η0(h)‖φ − Phφ‖1 + ‖ρ − ρh‖0 + ‖ξ − ξh‖0. (36)

Proof The first two estimates are the direct result of Theorem 2.1 of [10]. To prove the rest
of the theorem, we rewrite (12a) and (22a) as follows, respectively:

b(φ, ψ) = (ρ − c(ρ)ξ, ψ), ∀ψ ∈ H1
0 (�), (37)

b(φh, ψh) = (ρh − ch(ρh)ξh, ψh), ∀ψh ∈ Sh0 . (38)

Clearly, by (28), we have

φ = S(ρ − c(ρ)ξ), φh = Sh(ρh − ch(ρh)ξh). (39)

From (29) and (30), for s = 0, 1, we have

‖φ − φh‖s = ‖S(ρ − c(ρ)ξ)−Sh(ρh − ch(ρh)ξh)‖s
≤ ‖S(ρ − c(ρ)ξ)−Sh(ρ − c(ρ)ξ)‖s + ‖Sh(ρ − c(ρ)ξ)−Sh(ρh − ch(ρh)ξh)‖s
≤ ‖S(ρ − c(ρ)ξ)−Ph S(ρ − c(ρ)ξ)‖s + ‖ρ − ρh‖0 + ‖c(ρ)ξ − ch(ρh)ξh‖0
≤ ‖φ − Phφ‖s + ‖ρ − ρh‖0 + ‖c(ρ)(ξ − ξh)‖0 + |c(ρ) − ch(ρh)|‖ξh‖0.

Using (3.35) in [11] we get

|c(ρ) − ch(ρh)| � ‖ρ − ρh‖0 + ‖ξ − ξh‖0. (40)
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Thus we obtain

‖φ − φh‖s � ‖φ − Phφ‖s + ‖ρ − ρh‖0 + ‖ξ − ξh‖0. (41)

Therefore, taking s = 1 we get (35), while taking s = 0 and using the Nitsche technique we
arrive at (36). ��

According to the spectral approximation theory [15, 16], we derive the following theorem.

Theorem 2 Let (λh, σh, uh) be the j-th eigenpair of (23) with ‖uh‖0 = 1, λ be the j-th
eigenvalue of (14). Then when h is sufficiently small, there exists an eigenfunction (σ, u)

corresponding to λ such that

|λ − λh | � η0(h)(‖u − Phu‖1 + ‖σ − Phσ‖1) + ‖ξ − ξh‖0, (42)

‖u − uh‖0 � η0(h)(‖u − Phu‖1 + ‖σ − Phσ‖1) + ‖ξ − ξh‖0, (43)

‖u − uh‖1 � ‖u − Phu‖1 + ‖σ − Phσ‖0 + ‖ξ − ξh‖0, (44)

‖σ − σh‖0 � η0(h)(‖u − Phu‖1 + ‖σ − Phσ‖1) + ‖ξ − ξh‖0, (45)

‖σ − σh‖1 � η0(h)‖u − Phu‖1 + ‖σ − Phσ‖1 + ‖ξ − ξh‖0. (46)

Proof Recall that T f = φ = S(ρ − c(ρ)ξ), Th f = φh = Sh(ρh − ch(ρh)ξh) and ρ = S f ,
then, from (29) we have for s = 0, 1

‖T f −Th f ‖s � ‖S(ρ−c(ρ)ξ)−Ph S(ρ−c(ρ)ξ)‖s+‖Sh(ρ − c(ρ)ξ)−Sh(ρh−ch(ρh)ξh)‖s
� ‖S(ρ−c(ρ)ξ)−Ph S(ρ−c(ρ)ξ)‖s+‖ρ − ρh‖0 + ‖c(ρ)ξ − ch(ρh)ξh‖0.

According to Theorem 2.7 in [11], we have φ = S(ρ − c(ρ)ξ) ∈ H1
0 (�) ∩ H2(�). Then,

using the interpolation theory, (29), (31) and (10) we get

‖S(ρ − c(ρ)ξ) − Ph S(ρ − c(ρ)ξ)‖1 � h‖S(ρ − c(ρ)ξ)‖2
� h‖ρ − c(ρ)ξ‖0 � h‖ρ‖0 = h‖S f ‖0
� h‖ f ‖0,

and

‖ρ − ρh‖0 � h2α‖ρ‖1+α = h2α‖S f ‖1+α � h2α‖ f ‖0.
By the Nitsche technique, we obtain

‖S(ρ − c(ρ)ξ) − Ph S(ρ − c(ρ)ξ)‖0 � h1+α‖ f ‖0.
Using Lemma 3.3 and (3.35) in [11] we obtain

|c(ρ) − ch(ρh)| ≤ 1

‖ξ‖0 ‖ρ − ρh‖0 + ‖ρh‖0
‖ξh‖20

‖ξ − ξh‖0 + (‖ξh‖0 + ‖ξ‖0)‖ρh‖0
‖ξ‖0‖ξh‖20

‖ξ − ξh‖0
� h2α(‖ρ‖1+α + ‖ρ‖0) � h2α‖ f ‖0.

Applying the above inequality leads to

‖c(ρ)ξ − ch(ρh)ξh‖0 ≤ ‖c(ρ)ξ − c(ρ)ξh‖0 + ‖c(ρ)ξh − ch(ρh)ξh‖0
� ‖ξ − ξh‖0|c(ρ)| + |c(ρ) − ch(ρh)| � h2α‖ f ‖0.
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Combining all the above inequalities we have

‖T f − Th f ‖1 � h‖ f ‖0, (47)

‖T f − Th f ‖0 � h2α‖ f ‖0. (48)

From the spectral approximation theory [15, 16] we get

|λ − λh | � λ‖(T − Th)u‖0 (49)

and

‖u − uh‖s � λ‖(T − Th)u‖0, s = 0, 1. (50)

Take f = λu in (12), then using (36) and (34) we obtain

λ‖(T − Th)u‖0 � η0(h)‖T (λu) − PhT (λu)‖1 + ‖S(λu) − Sh(λu)‖0 + ‖ξ − ξh‖0
� η0(h)‖u − Phu‖1 + ‖σ − Phσ‖0 + ‖ξ − ξh‖0
� η0(h)(‖u − Phu‖1 + ‖σ − Phσ‖1) + ‖ξ − ξh‖0. (51)

Inserting (51) into (49) and (50) we have (42) and (43), respectively. By (35) we deduce

λ‖(T − Th)u‖1 � ‖T (λu) − PhT (λu)‖1 + ‖S(λu) − Sh(λu)‖0 + ‖ξ − ξh‖0
= ‖u − Phu‖1 + ‖σ − Phσ‖0 + ‖ξ − ξh‖0, (52)

from which and (50) we can get (44). Applying (29), the triangle inequality, (42) and (43)
yields

‖σh − Phσ‖s = ‖Sh(λhuh) − Ph S(λu)‖s
� ‖λhuh − λu‖0 ≤ |λ|‖u − uh‖0 + |λ − λh |‖uh‖0
� η0(h)(‖u − Phu‖0 + ‖σ − Phσ‖1) + ‖ξ − ξh‖0, s = 0, 1. (53)

Using the Nitsche technique we have

‖σ − Phσ‖0 � η0(h)‖σ − Phσ‖1. (54)

Combining (53) and (54) we arrive at (45) and (46). ��
For any (ψ, v) ∈ H1

0 (�) × H1
0 (�), v �= 0, define the Rayleigh quotient

λR(v) = −ah(ψ,ψ) + 2b(ψ, v)

(v, v)
. (55)

Lemma 1 Let (λ, σ, u)be the eigenpair of (23), then for all (ψ, v) ∈ H1
0 (�)×H1

0 (�), v �= 0,
there holds

λR(v) − λ = −a(ψ − σ,ψ − σ) + 2b(ψ − σ, v − u)

(v, v)
− λ(v − u, v − u)

(v, v)

− (c(ψ)ξ − ch(ψ)ξh, ψ)

(v, v)
. (56)

Proof Note that

ah(w,ψ) = a(w,ψ) + (c(w)ξ − ch(w)ξh, ψ), ∀w,ψ ∈ H1
0 (�). (57)
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It is easy to see that

a(ψ,ψ) = a(ψ − σ,ψ − σ) + 2a(ψ, σ ) − a(σ, σ ),

b(ψ, v) = b(ψ − σ, v − u) + b(ψ, u) + b(σ, v) − b(σ, u),

(v, v) = (v − u, v − u) + 2(v, u) − (u, u).

Some tedious manipulation yields

−ah(ψ, ψ) + 2b(ψ, v) − λ(v, v)= −a(ψ − σ, ψ − σ)+2b(ψ − σ, v − u)−λ(v − u, v − u)

− (c(ψ)ξ − ch(ψ)ξh, ψ) + (2b(ψ, u) − 2a(ψ, σ ))

+ (a(σ, σ ) − 2b(σ, u) + λ(u, u)) + (2b(σ, v) − λ(v, u)).

From (14) we can eliminate the last three terms. Dividing both sides by (v, v), we have the
desired conclusion. ��

Theorem 3 Under the conditions of Theorem 2, the following identity holds

λh − λ = (−a(σh − σ, σh − σ) + 2b(σh − σ, uh − u) − λ‖uh − u‖20 − (c(σh)ξ − ch(σh)ξh, σh)).

(58)

Proof It follows from (23) that

λh = −ah(σh, σh) + 2b(σh, uh)

(uh, uh)
. (59)

Taking (ψ, v) = (σh, uh) in (56) we obtain the desired identity. ��

From Theorem 2, Theorem 3, (32), the interpolation theory and Lemma 3.3 in [11], we
can deduce the following theorem.

Theorem 4 Under the conditions of Theorem 2, the following inequalities hold

‖u − uh‖1 � h, (60)

‖u − uh‖0 � h2α, (61)

‖σ − σh‖0 + hα‖σ − σh‖1 � h2α, (62)

|λ − λh | � h2α. (63)

Remark 4 If we use the graded meshes defined in [11], then applying Lemma 4.6 in [11] and
Theorem 2, we can improve the result of Theorem 4 as follows

‖u − uh‖0 + h‖u − uh‖1 � h2,

‖σ − σh‖0 + h‖σ − σh‖1 � h2,

|λ − λh | � h2.

However, numerical experiments show that even if the uniformmeshes are used in non-convex
domains, the numerical eigenvalues can converge at O(h2).
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4 Numerical Experiments

In this section, we present some numerical experiments to confirm the a priori error estimates
derived in Theorem 4. Since the Ciarlet-Raviart mixed finite element method (6) is valid in
convex domain (see [5, 10]), here we consider only non-convex domains. We shall consider
the following three different domains: the L-shaped domain, the slit domain, and the square
ring, which are plotted in Fig. 1. To implement the modified mixed finite element method
(23), we need the following cut-off function [11]:

χ(r; τ, R) =

⎧⎪⎪⎨
⎪⎪⎩
0, if r ≥ R,

1, if r ≤ τ R,

1
2 − 15

16

(
2r

R(1−τ)
− 1+τ

1−τ

)
+ 5

8

(
2r

R(1−τ)
− 1+τ

1−τ

)3− 3
16

(
2r

R(1−τ)
− 1+τ

1−τ

)5
, otherwise,

where R = 1
4 , τ = 1

8 for the first two domains, and R = 1
6 , τ = 1

8 for the last domain.
All algorithms are implemented by MATLAB. The linear systems obtained by the modified
mixed method are solved by the multigrid solver in the iFEM package [17].

4.1 L-Shaped Domain

The first experiment is for the L-shaped domain with � = (0, 1)2 \ ([1/2, 1) × (0, 1/2]). To
begin with, we compare our method with the quadratic C0 IPG, the quintic Argyris element,
the Ciarlet-Raviart mixed method, the Morley element reported in [4] and the quadratic and
cubic Ciarlet-Raviart mixed method reported in [10]. Our numerical method is computed
on a quasi-uniform mesh generated by matlab code initmesh with maximum edge size
= 1/80. The numerical results of the above methods are presented in Table 1. It can be seen
that our method is comparable with C0 IPG, Argyris and Morley methods, and has much
less degrees of freedom than these methods. Furthermore, compared with the Ciarlet-Raviart
mixed method, C-R(2) and C-R(3), our method does not generate spurious eigenvalues in
non-convex domain.

Next we investigate the convergence rate of the modified mixed method on uniform
meshes. The initialmeshTh0 is shown in Fig. 1a. The finermeshThl is obtained by dividing the
initial mesh uniformly after l times. Since the exact eigenvalues are unknown except the third
eigenvalue λ3 = 64π4, we take λ1 ≈ 2619.82589334584, λ2 ≈ 3695.30357802102, λ4 ≈
13944.2856539083, λ5 ≈ 19198.6941904586, and λ6 ≈ 30947.8124606782 as reference
eigenvalues, which are obtained by the quintic C0IPG adaptive algorithm introduced in [18].
The error indicator in [18] is modified here due to the different boundary conditions. In the
refinement procedure, we use the Dörfler marking strategy [19] with parameter equal to 0.2.
We stop the adaptive algorithm after 50 adaptive iterations. To see the convergence rate, we
use

R = log2
|λi − λi,hl |

|λi − λi,hl+1 |
. (64)

Here λi,hl denotes the i-th numerical eigenvalue obtained by the modified mixed method on
the mesh Thl . Table 2 lists the first six numerical eigenvalues on the L-shaped domain using
uniformmeshes. Table 3 records the convergence history of the first six eigenvalues obtained
by the modified mixed method. Surprisingly, despite the reentrant corner, the convergence
rates are all O(h2), which is better than the rate O(h2α) predicted in Theorem 4.
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(a) (b) (c)

Fig. 1 Initial meshes for (a) the L-shaped domain, (b) the slit domain and (c) the square ring

Table 1 The first six eigenvalues obtained by seven methods on the L-shaped domain

dof λ1,h λ2,h λ3,h λ4,h λ5,h λ6,h

Modified Mixed 8077 2621 3699 6242 13968 19234 31021

C0IPG [4] 32705 2718 3743 6061 13666 19156 31027

Argyris [4] 74454 2692 3765 6234 13972 19375 31281

Morley [4] 33025 2414 3663 6225 13904 18642 30002

Mixed [4] 8097 1491 3699 6242 13969 16354 27617

C-R(2) [10] 5890 1490 3695 6234 13945 16319 27547

C-R(3) [10] 3266 1490 3695 6234 13944 16318 27545

Table 2 The first six eigenvalues obtained by modified mixed method on the L-shaped domain using uniform
meshes

dof λ1,h λ2,h λ3,h λ4,h λ5,h λ6,h

47 2822.2404 4595.5512 8342.5404 20993.3799 27482.8942 48416.0562

191 2673.3623 3910.3929 6726.3337 15565.4487 21179.2559 34840.8046

767 2633.7149 3748.6548 6355.0676 14341.0616 19692.8282 31894.6539

3071 2623.4781 3708.6511 6264.2695 14042.9825 19322.7808 31183.8024

12287 2620.7658 3698.6468 6241.6955 13968.9335 19229.8576 31007.0613

49151 2620.0725 3696.1406 6236.0597 13950.4466 19206.5326 30962.7136

196607 2619.8900 3695.5130 6234.6513 13945.8259 19200.6648 30951.5609

786431 2619.8424 3695.3559 6234.2992 13944.6707 19199.1893 30948.7547

3145727 2619.8300 3695.3166 6234.2112 13944.3818 19198.8182 30948.0485

125829111 2619.8268 3695.3067 6234.1892 13944.3096 19198.7249 30947.8708

4.2 Slit Domain

In the second experiment, we consider the slit domain � = (0, 1)2 \ {1/2 ≤ x ≤ 1, y =
1/2}, with maximal reentrant corner of angle 2π . The initial mesh on this domain is shown
in Fig. 1b. We also refine the initial mesh uniformly to get finer meshes. In Table 4, we
present the first six numerical eigenvalues obtained by the modified mixed method on the
slit domain. Since the exact eigenvalues are unknown except λ1 = 25π4 and λ4 = 64π4, we
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Table 4 The first six eigenvalues obtained by modified mixed method on the slit domain

dof λ1,h λ2,h λ3,h λ4,h λ5,h λ6,h

45 2765.8409 2888.8669 5544.7613 8338.4977 17802.8847 24871.4901

217 2539.5982 2706.2879 4699.0746 6725.9941 13760.5363 18466.1474

945 2461.1212 2689.6879 4498.9558 6355.0434 12827.9667 16955.2271

3937 2441.6869 2686.0276 4449.5111 6264.2678 12599.5952 16584.8771

16065 2436.8412 2685.1205 4437.1681 6241.6953 12542.7854 16492.7877

64897 2435.6307 2684.9069 4434.0811 6236.0597 12528.5991 16469.7971

260865 2435.3281 2684.8510 4433.3090 6234.6513 12525.0534 16464.0514

1046017 2435.2525 2684.8372 4433.1159 6234.2992 12524.1670 16462.6151

4189185 2435.2336 2684.8336 4433.0677 6234.2112 12523.9454 16462.2561

16766977 2435.2289 2684.8327 4433.0556 6234.1892 12523.8900 16462.1663

take λ2 ≈ 2684.83284764717, λ3 ≈ 4433.05167246812, λ5 ≈ 12523.8716924531, and
λ6 ≈ 16462.1374178953 as reference eigenvalues, which are obtained by the quintic C0IPG
adaptive algorithm after 97 adaptive iterations. In the refinement procedure, we now use the
Dörfler marking strategy with parameter equal to 0.1. In Table 5, we display the convergence
history of these eigenvalues. As the previous experiment, although the eigenfunctions are of
low regularity around the corner, all numerical eigenvalues on the uniform meshes achieve
the optimal rate O(h2). In Table 6, we compare the modified mixed method with other four
methods. The mesh size used in the computations is≈ 0.0055. Comparing with the modified
mixed method, the C0 IPG method, the Morley element and the Argyris element behave
better when the eigenfunctions are very smooth. However, the performance of the modified
mixed method is better than other methods when the eigenfunctions are less smooth. Like the
previous experiment, we observe from Table 6 that the Ciarlet-Raviart mixed finite element
method may produce spurious eigenvalues when the eigenfunctions are less smooth, while
the modified mixed method is free of spurious eigenvalues.

4.3 Square Ring

Finally, we consider the square ring � = (0, 1)2 \ ([1/3, 2/3]2). In this experiment, we use
quasi-uniform meshes. The initial mesh on this domain is shown in Fig. 1c, and we refine the
initial mesh uniformly to obtain finer meshes. The numerical eigenvalues and related conver-
gence history are reported in Tables 7 and 8, respectively. To see the convergence rates, we
take λ1 ≈ 11575.5910860121, λ2 ≈ 12190.0442588537, λ3 ≈ 12190.0492224295, λ4 ≈
14200.8671301781, λ5 ≈ 15618.5618931414, and λ6 ≈ 21745.0817706159 as reference
eigenvalues, which are obtained by the quintic C0IPG adaptive algorithm after 136 adap-
tive iterations. We still use the Dörfler marking strategy, and the parameter is set to 0.1. It
can be seen from Table 8 that despite the four reentrant corners all numerical eigenvalues
converge at the optimal rate O(h2). Note that the convergence rate is better than what we
obtained in Theorem 4. In Table 9, we display numerical results of five different methods
on a quasi-uniform mesh with mesh size ≈ 0.0039. It can be seen that the performance of
the modified mixed method is comparable to the C0IPG method, the Argyris method and the
Morley method. In addition, comparing with the Ciarlet-Raviart mixed method, our method
does not generate spurious eigenvalues.
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Table 6 The first six eigenvalues obtained by five methods on the slit domain

dof λ1,h λ2,h λ3,h λ4,h λ5,h λ6,h

Modified Mixed 16065 2436.8412 2685.1205 4437.1681 6241.6953 12542.7854 16492.7877

C0IPG 260865 2436.5873 2718.3221 4453.8718 6242.5260 12545.4672 16492.9858

Argyris 590458 2435.2273 2691.6942 4438.9371 6234.1818 12525.8683 16462.1364

Morley 262145 2434.8270 2642.2727 4428.3125 6232.8523 12517.9292 16455.8866

Mixed 16065 1133.0888 2436.8413 4437.1681 6241.6951 12542.7854 15053.5876

Table 7 The first six eigenvalues obtained by modified mixed method on the square ring

dof λ1,h λ2,h λ3,h λ4,h λ5,h λ6,h

72 13199.3873 15043.5260 15221.0294 16069.9131 19530.5875 26203.3113

336 11833.8354 12463.7720 12536.8434 14675.5949 16125.1736 22760.3983

1440 11618.2080 12247.8454 12248.3350 14321.0590 15722.7245 21997.2147

5952 11586.6967 12204.9675 12204.9747 14231.2062 15644.8961 21808.1987

24192 11578.4400 12193.8534 12193.8536 14208.5011 15625.2749 21760.9347

97536 11576.3175 12191.0105 12191.0105 14202.7829 15620.2472 21749.0480

391680 11575.7742 12190.2890 12190.2890 14201.3466 15618.9871 21746.0760

1569792 11575.6342 12190.1048 12190.1048 14200.9864 15618.6663 21745.3307

6285312 11575.5987 12190.0583 12190.0583 14200.8962 15618.5853 21745.1440

It is worth mentioning that our method has certain advantages in approximating multiple
eigenvalues. In this experiment, the second and the third eigenvalues are repeated, i.e. λ2 =
λ3. The corresponding eigenfunctions are depicted in Fig. 2. It can be seen that the second
eigenfunction has singularities at the upper-left and low-right of the hole, while the third
eigenfunction is singular at the other two opposite corners. To capture the singularities, a
popular way is to use adaptive scheme. Several studies have shown that an effective adaptive
strategy for multiple eigenvalues should consider all involved discrete eigenfunctions [20–
22], otherwise the singularities of the target eigenfunctions may be resolved in a wrong
way. However, the main issue is that in general it is not known a priori the multiplicity of
an eigenvalue of the continuous problem, which in turn brings difficulties to the design of
efficient adaptive methods.

Interestingly, it seems that our method does not need to consider these problems. As men-
tioned before, our method enjoys O(h2) convergence rate for the first six eigenvalues on
quasi-uniform meshes, which means that there is no need to use adaptive method. There-
fore, we do not need to bother to design efficient adaptive strategies, especially when the
multiplicity of an eigenvalue is not known a priori. Moreover, due to the symmetry of the
initial mesh and the uniform refinement strategy, numerical eigenvalues which approximate a
multiple eigenvalue can be very close. For instance λ2,h and λ3,h in Table 7 are almost equal
as h → 0. To sum up, our method has some potential in calculating multiple eigenvalues.
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Fig. 2 The eigenfunctions corresponding to λ2 (left) and λ3 (right) on the square ring for the three refinement
levels
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